Super-resolution imaging system based on integrated microsphere objective lens

Author:

Song Yang,Yang Xi-Bin,Yan Bing,Wang Chi,Sun Jian-Mei,Xiong Da-Xi, ,

Abstract

White-light super-resolution imaging, proposed in 2011, has been achieved by combining the transparent microspheres of the micron scale with an ordinary optical microscope. At present, in most of the researches employed is the way of spreading microspheres directly onto the surface of sample, which causes the randomness and discontinuity of microspheres. It is impossible to achieve the complete imaging of specific regions, which greatly limits the application scope of this technology. Such an issue can be solved by using microprobes or micro-cantilevers to precisely transfer the location of microsphere, but for doing so, a sophisticated controlling system is required, which is costly and not user-friendly. In this paper, a robust, controllable, easy-to-use integrated design which can efficiently consolidate microsphere and objective together is demonstrated for super-resolution imaging. The PDMS and customized metal sleeve are used to encapsulate the microsphere semi-submerged on the ordinary objective lens to achieve an integrated design. In this system, the distances among the microsphere, objective lens and the sample are controlled accurately by building a side-view imaging and position feedback system. With the help of a universal microscopic imaging system, the super-resolution imaging of specific controlled areas is realized. Based on theoretical analysis, the semi-submerged structure of the 100-μm-diameter BaTiO<sub>3</sub> microsphere has a strong focusing effect, which can form the so-called ‘photonic nanojet’ on a micro-scale in length and on a sub-diffraction scale in waist to possess the ability to break through the diffraction limit within the range of focal length. At the same time, experiments are carried out for investigating imaging performances at various working distances in the air. According to the experimental results, the system can clearly distinguish between the CPU lattice features of 200 nm and the Blu-ray disc fringe of 100 nm, which means that the resolution of the ordinary microscopic objective lens (40×, NA 0.6) is significantly enhanced by 4.78×. In addition, with the increase of working distance, the magnification factor increases gradually, but the image contrast becomes worse, and the super-resolution effect fades. The integrated design which can match with ordinary optical microscope to achieve super resolution imaging has universality of installation and operation, and greatly conduces to super-resolution imaging of sub-diffraction limit samples.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3