Superconducting-circuit based Aulter-Towns splitting effect

Author:

Wu Xiao-Yu,Zhao Hu,Li Zhi, ,

Abstract

The superconducting quantum bit(qubit) based on Josephson junction is a macroscopic artificial atom. The basic parameters of the artificial atom can be changed by micro and nano machining. The three-dimensional (3D) Transmon qubit is a kind of qubit with the longer decoherence time. It is coupled with a 3D superconducting cavity by means of capacitance. It is a man-made coupling system between atom and cavity field, which can verify the effects of atomic physics, quantum mechanics, quantum optics and cavity quantum electrodynamics. In this paper, transmon qubits are prepared by the double angle evaporation method, and coupled with aluminum based 3D superconducting resonator to form 3D transmon qubits. The basic parameters of 3D transmon are characterized at an ultra-low temperature of 10 mK. The 3D transmon parameters are <i>E</i><sub>C</sub> = 348.74 MHz and <i>E</i><sub>J</sub> = 11.556 GHz. The coupling coefficient <i>g</i><sup>2</sup>/<i>Δ</i> between qubit and the 3D cavity is 43 MHz, which is located in the dispersive regime. The first transition frequency of qubit is <i>f</i><sub>01</sub><italic/> = 9.2709 GHz, and the second transition frequency is <i>f</i><sub>12</sub> = 9.0100 GHz. The 3D resonator is made of the material 6061T6 aluminum, the loaded quality factor is 4.8 × 10<sup>5</sup>, and the bare frequency of the resonator is 8.108 GHz. The Jaynes-Cummings readout method is used to find the optimal readout power to distinguish among the qubit in the ground state <inline-formula><tex-math id="M1">\begin{document}$ \left| {\rm{0}} \right\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200796_M1.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200796_M1.png"/></alternatives></inline-formula>, qubit in the superposition state of <inline-formula><tex-math id="M2">\begin{document}$ \left| {\rm{0}} \right\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200796_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200796_M2.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M3">\begin{document}$ \left| {\rm{1}} \right\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200796_M3.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200796_M3.png"/></alternatives></inline-formula>, and qubit in the superposition state of <inline-formula><tex-math id="M4">\begin{document}$ \left| {\rm{0}} \right\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200796_M4.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200796_M4.png"/></alternatives></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ \left| {\rm{1}} \right\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200796_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200796_M5.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ \left| {\rm{2}} \right\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200796_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200796_M6.png"/></alternatives></inline-formula>. Then, the Aulter-Townes splitting (ATS) experiment can be fulfilled in this system. Unlike the method given by Novikov et al. [Novikov S, Robinson J E, Keane Z K, et al. 2013 <i>Phys. Rev. B</i> <b>88</b> 060503], our method only needs to apply continuous microwave excitation signal to the qubit, and does not need to carry out precise timing test on the qubit, thus reducing the test complexity of observing ATS effect. The ATS effect in resonance and non-resonance regime are observed. In the resonance ATS experiment, in order to obtain the peak value and frequency of resonance peak, Lorentz curve can be used for fitting peaks, and the ATS curve of double peak can be fitted by adding two Lorentz curves together. In the non-resonance ATS experiment, the detection signal is scanned, and the ATS double peak will shift with the different coupling signal detuning, forming an anti-crossing structure. The two curves formed by crossing free structure give two eigenvalues of Hamiltonian. By solving the equation, the experimental results can also be found to be consistent with the theoretical results.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3