Author:
Wu Jing-Nan,Xu Zhi-Hao,Lu Zhan-Peng,Zhang Yun-Bo, ,
Abstract
We consider a one-dimensional <i>p</i>-wave superconducting quantum wire with the modulated chemical potential, which is described by <inline-formula><tex-math id="M9">\begin{document}$\hat{H}= \displaystyle\sum\nolimits_{i}\left[ \left( -t\hat{c}_{i}^{\dagger }\hat{c}_{i+1}+\Delta \hat{c}_{i}\hat{c}_{i+1}+ h.c.\right) +V_{i}\hat{n}_{i}\right]$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20191868_M9.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20191868_M9.png"/></alternatives></inline-formula>, <inline-formula><tex-math id="M10">\begin{document}$V_{i}=V\dfrac{\cos \left( 2{\text{π}} i\alpha + \delta \right) }{1-b\cos \left( 2{\text{π}} i\alpha+\delta \right) }$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20191868_M10.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20191868_M10.png"/></alternatives></inline-formula> and can be solved by the Bogoliubov-de Gennes method. When <inline-formula><tex-math id="M11">\begin{document}$b=0$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20191868_M11.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20191868_M11.png"/></alternatives></inline-formula>, <inline-formula><tex-math id="M12">\begin{document}$\alpha$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20191868_M12.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20191868_M12.png"/></alternatives></inline-formula> is a rational number, the system undergoes a transition from topologically nontrivial phase to topologically trivial phase which is accompanied by the disappearance of the Majorana fermions and the changing of the <inline-formula><tex-math id="M13">\begin{document}$Z_2$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20191868_M13.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20191868_M13.png"/></alternatives></inline-formula> topological invariant of the bulk system. We find the phase transition strongly depends on the strength of potential <i>V</i> and the phase shift <inline-formula><tex-math id="M14">\begin{document}$\delta$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20191868_M14.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20191868_M14.png"/></alternatives></inline-formula>. For some certain special parameters <inline-formula><tex-math id="M15">\begin{document}$\alpha$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20191868_M15.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20191868_M15.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M16">\begin{document}$\delta$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20191868_M16.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20191868_M16.png"/></alternatives></inline-formula>, the critical strength of the phase transition is infinity. For the incommensurate case, i.e. <inline-formula><tex-math id="M17">\begin{document}$\alpha=(\sqrt{5}-1)/2$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20191868_M17.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20191868_M17.png"/></alternatives></inline-formula>, the phase diagram is identified by analyzing the low-energy spectrum, the amplitudes of the lowest excitation states, the <inline-formula><tex-math id="M18">\begin{document}$Z_2$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20191868_M18.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20191868_M18.png"/></alternatives></inline-formula> topological invariant and the inverse participation ratio (IPR) which characterizes the localization of the wave functions. Three phases emerge in such case for <inline-formula><tex-math id="M19">\begin{document}$\delta=0$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20191868_M19.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20191868_M19.png"/></alternatives></inline-formula>, topologically nontrivial superconductor, topologically trivial superconductor and topologically trivial Anderson insulator. For a topologically nontrivial superconductor, it displays zero-energy Majorana fermions with a <inline-formula><tex-math id="M20">\begin{document}$Z_2$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20191868_M20.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20191868_M20.png"/></alternatives></inline-formula> topological invariant. By calculating the IPR, we find the lowest excitation states of the topologically trivial superconductor and topologically trivial Anderson insulator show different scaling features. For a topologically trivial superconductor, the IPR of the lowest excitation state tends to zero with the increase of the size, while it keeps a finite value for different sizes in the trivial Anderson localization phase.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy