Heat flow of laser-ablated gold plasma in inertial confinement fusion hohlraum

Author:

Zhang En-Hao,Cai Hong-Bo,Du Bao,Tian Jian-Min,Zhang Wen-Shuai,Kang Dong-Guo,Zhu Shao-Ping, , , ,

Abstract

When evaluating the plasma parameters in inertial confinement fusion, the flux-limited local Spitzer-Härm (S-H) model in radiation hydrodynamics simulations may be invalid when electron temperature gradient is too large. In other publications, the electron distribution function (EDF) could be explained by comparing the energy equipartition rate <inline-formula><tex-math id="M7">\begin{document}$R_{\rm eq}=\dfrac{1}{2}m_{\rm e}v_{\rm te} ^2\nu_{\rm ee}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M7.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M7.png"/></alternatives></inline-formula> with the heating rate <inline-formula><tex-math id="M8">\begin{document}$R_{\rm heat}=\dfrac{1}{2}m_{\rm e}v_{\rm os} ^2\nu_{\rm ei}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M8.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M8.png"/></alternatives></inline-formula>. When the condition <inline-formula><tex-math id="M9">\begin{document}$R_{\rm heat}\sim R_{\rm eq}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M9.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M9.png"/></alternatives></inline-formula> is satisfied, the EDF deviates from Maxwell equilibrium distribution, and is well fitted to the super-Gaussian distribution <inline-formula><tex-math id="M10">\begin{document}$f({{ v}})=C_m{\rm e}^{-(v/v_m)^m}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M10.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M10.png"/></alternatives></inline-formula> with the index <i>m </i>(<inline-formula><tex-math id="M11">\begin{document}$2<m<5$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M11.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M11.png"/></alternatives></inline-formula>). The number of energetic electrons of the super-Gaussian distribution is less than that of the Maxwell distribution, which plays an important role in electron heat flux, especially for electrons of 3.7<inline-formula><tex-math id="M12">\begin{document}$v_{\rm te}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M12.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M12.png"/></alternatives></inline-formula>. So electron heat flux of the super-Gaussian distribution is smaller than that of the Maxwell distribution. In this paper, EDF and electron heat flux in laser-produced Au plasma are simulated by using 1D3V PIC code (Ascent). It is found that in the coronal region, the laser intensity is larger, and the electron temperature is lower than the high-density region. So <inline-formula><tex-math id="M13">\begin{document}$\alpha=Z(v_{\rm os}/v_{\rm te})^2>1$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M13.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M13.png"/></alternatives></inline-formula>, <inline-formula><tex-math id="M14">\begin{document}$R_{\rm heat}>R_{\rm eq}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M14.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M14.png"/></alternatives></inline-formula>, the EDF is well fitted to super-Gaussian distribution, where the index <i>m</i> is evaluated to be 3.34. In this region, the large electron temperature gradient leads to a small temperature scale length (<inline-formula><tex-math id="M15">\begin{document}$L_{\rm e}=T_{\rm e}/(\partial T_{\rm e}/\partial x)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M15.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M15.png"/></alternatives></inline-formula>), but the low e-e and e-i collision frequencies lead to a large electron mean-free-path (<inline-formula><tex-math id="M16">\begin{document}$\lambda_{\rm e}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M16.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M16.png"/></alternatives></inline-formula>). So the Knudsen number <inline-formula><tex-math id="M17">\begin{document}$\lambda_{\rm e}/L_{\rm e}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M17.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M17.png"/></alternatives></inline-formula> is evaluated to be 0.011, which is much larger than the critical value <inline-formula><tex-math id="M18">\begin{document}$2\times10^{-3}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M18.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M18.png"/></alternatives></inline-formula> of the S-H model, flux-limited local S-H electron heat flux is invalid. As a result, the limited-flux S-H predicts too large an electron heat flux, which results in much higher electron temperature of radiation hydrodynamics simulation than that of SG experiments. This heat flux inhibition phenomenon in coronal region cannot be explained by the flux-limited local S-H model, and non-local electron heat flux should be considered. In the high density region, the laser intensity is weaker, and the electron temperature is higher, so <inline-formula><tex-math id="M19">\begin{document}$\alpha=Z(v_{\rm os}/v_{\rm te})^2<1$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M19.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M19.png"/></alternatives></inline-formula>, <inline-formula><tex-math id="M20">\begin{document}$R_{\rm heat}<R_{\rm eq},$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M20.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M20.png"/></alternatives></inline-formula> but EDF is still well fitted to super-Gaussian distribution, where the index m is evaluated to be 2.93. In this region, <inline-formula><tex-math id="M21">\begin{document}$L_{\rm e}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M21.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M21.png"/></alternatives></inline-formula> is larger, <inline-formula><tex-math id="M22">\begin{document}$\lambda_{\rm e}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M22.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M22.png"/></alternatives></inline-formula> is smaller, so the Knudsen number is smaller, which is evaluated to be <inline-formula><tex-math id="M23">\begin{document}$7.58\times10^{-4}<2\times10^{-3}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M23.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M23.png"/></alternatives></inline-formula>. As a result, The flux-limited local S-H electron heat flux is valid. However, the electron heat flux depends on the flux limiting factor (<inline-formula><tex-math id="M24">\begin{document}$f_{\rm e}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M24.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20191423_M24.png"/></alternatives></inline-formula>) that varies with laser intensity and electron temperature.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3