Analytical potential energy function for tritium water molecule T2O(X1A1)

Author:

Luo Wen-Lang ,Ruan Wen ,Zhang Li ,Xie An-Dong ,Zhu Zheng-He ,

Abstract

The greatest difficulty in deriving the analytical potential energy function of T2O(X1A1) lies in its identity with that of H2O(X1A1) under the Born-Oppenheimer approximation. However, molecular potential energy function is actually a function of internal coordinates, such as bond length and bond angle which correlate with vibration energy, hence with vibration frequency, force constants and isotopic mass. Based on these relations, by using nuclear vibration, rotation, and translation energies to correct electronic energies, the force constants of T2O(X1A1) can be obtained, which represent the difference in masses of isotopes H and T. The calculations are reasonably consistent with reference values. After determining the dissociation limits and dissociation energy and all parameters of two-body terms of T2O(X1A1), the analytical potential energy function has finally been derived by using many-body expansion theory with due consideration of the isotopic effect. The potential energy contours correctly show the equilibrium structure of T2O(X1A1) and the characteristics of the reactions T+OT→T2O and O+T2→T2O. The results lay a sound basis for further researches on reactive collisions.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3