Research of the impact of group velocity dispersion on the second-order correlation of entangled light field

Author:

Han Xiao-Chun ,Huang Jing-Zheng ,Fang Chen ,Zeng Gui-Hua ,

Abstract

In the experiment presented in the paper, HBT (Hanbury-Brown and Twiss) interferometer is used to measure the second-order correlation function (G2) for two entangled photons, denoted as signal and idle ones, generated by the spontaneous parametric down-conversion process. When an extra optical fiber is inserted in the signal's path, the arrival times of these two photons are different, so that the length of the fiber can be estimated by measuring the time offset in the G2 function.#br#As the laser light we used is not monochromatic, the experimental result is affected by the group velocity dispersion (GVD). Light of different wavelength has different velocity and leads to different travelling time in the fiber. Through calculation, we find that the G2 function of each wavelength has the same shape but different center time offset. Thus, the final G2 function, as a superimposition of the functions with different wavelengths, is broadened in a long-distance measurement, which seriously reduces the estimation accuracy. We analyze this phenomenon in both theory and experiment, and the experimental results fit our theoretical simulations quite well.#br#In the theoretical analysis, we find that the group velocity dispersion introduces an additional time offset to the final G2 function which is proportional to the total time offset. In our experiment, this additional time offset is about 1% of the total time offset. In particular, this effect results in a 63600 ps extra time offset, which can be compensated in post process, with a time accuracy of about 1 ps.#br#This paper focuses on the G2 function affected by the group velocity dispersion, and also calculates the additional time offset produced by group velocity dispersion, and thus gives a method to compensate the additional time offset through calculation.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3