Effects of CH3NH3I on fabricating CH3NH3PbI(3-x)Clx perovskite solar cells

Author:

Xia Xiang ,Liu Xi-Zhe , ,

Abstract

Perovskite solar cell, which is prepared by using the organic-inorganic hybrid halide CH3NH3PbX3 (X = I, Cl and Br), receives widespread attention because of its solution processability and high photon-to-electron conversion efficiency. The highest reported photon-to-electron conversion efficiency is that using CH3NH3PbI(3-x)Clx as an absorber. It is reported that the diffusion length is greater than 1 micrometer in this mixed halide perovskite. The method most commonly used in preparing CH3NH3PbI(3-x)Clx film is the one-step pyrolysis method, which has a complex reaction mechanism. In this paper, we review the work about CH3NH3PbI(3-x)Clx perovskite, in which emphasis is put on the importance of the preparation process, and analyze the role of CH3NH3I in the one-step pyrolysis method for fabricating the CH3NH3PbI(3-x)Clxperovskite layer. Scanning electron microscope images show that CH3NH3I can improve the coverage and crystallinity of the perovskite layer for precursors in low CH3NH3I concentrations (CH3NH3I/PbCl2=2.0 and 2.5). For precursors in high CH3NH3I concentrations (CH3NH3I/PbCl2=2.75 and 3), this change is not obvious. X-ray photoelectron spectroscopy confirms the change of coverage, and indicates that the content of Cl in CH3NH3PbI(3-x)Clx will be less than 5% for precursors with high CH3NH3I concentrations (CH3NH3I/PbCl2>2.5). Perovskite solar cells based on CH3NH3PbI(3-x)Clx with different Cl dopant concentrations are studied by photoelectric measurements. Photocurrent density-photovoltage curves show that the performance of the devices increases with the increase of CH3NH3I concentration in precursors. And the incident-photon-to-current conversion efficiency (IPCE) measurements indicate that the devices fabricated by using precursors with high CH3NH3I concentration have a relatively high external quantum efficiency. These results imply that only CH3NH3PbI(3-x)Clx with very low Cl dopant concentration will be effective material for photovoltaic application. To further understand the difference between these devices during working condition, transient photovoltage/photocurrent measurements are carried out to investigate the carrier dynamics in the device. Transient photovoltage decay curves indicate that high Cl dopant concentration may decrease the photoelectron lifetime in CH3NH3PbI(3-x)Clx, and results in a relative low open-circuit photovoltage in the corresponding photovoltaic devices. The charge transport time in the devices of various Cl concentrations are studied by transient photocurrent decay method. CH3NH3PbI(3-x)Clx with low Cl dopant concentration has relative short transport time, which can avoid the recombination process and increase the charge collection efficiency.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference36 articles.

1. Yu H Z 2013 Acta Phys. Sin. 62 027201 (in Chinese) [於黄忠 2013 物理学报 62 027201]

2. Wang L, Zhang X D, Yang X, Wei C C, Zhang D K, Wang G C, Sun J, Zhao Y 2013 Acta Phys. Sin. 62 058801 (in Chinese) [王利, 张晓丹, 杨旭, 魏长春, 张德坤, 王广才, 孙建, 赵颖 2013 物理学报 62 058801]

3. Han A J, Sun Y, Li Z G, Li B Y, He J J, Zhang Y, Liu W 2013 Acta Phys. Sin. 62 048401 (in Chinese) [韩安军, 孙云, 李志国, 李博研, 何静靖, 张毅, 刘玮 2013 物理学报 62 048401]

4. Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

5. Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Y um J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3