Martensitic transformation and magnetic features in Ni-Fe-Mn-In Heusler alloy

Author:

Zhang Yuan-Lei ,Li Zhe ,Xu Kun ,Jing Chao , , ,

Abstract

The Ni50-xFexMn37In13(x=1, 3, 5) polycrystalline samples are prepared by arc melting method. The martensitic transformations and crystal structures for Ni50-xFexMn37In13(x=1, 3, 5) samples are systematically analyzed by measuring the structure and magnetism. The results show that the three samples present different structures at room temperature. In the mean time, with the increase of the content of Fe, the martensitic transformation temperature rapidly decreases, while the ferromagnetism is gradually enhanced for these alloys. Furthermore, both the magnetoresistance and the magnetocaloric effect are also investigated in Fe3 and Fe5 alloys. For an applied magnetic field of 3 T, it is found that the magnetoresistance effects of two samples are about -46% and -15%, while their isothermal entropy changes are about 6 J·kg-1 and 9.5 J·kg-1·K-1 during reverse martensitic transformation, respectively. Accompanied with the disappearing of a very wide transforming range and a slight magnetic hysteresis loss, the net refrigerating capacity of Fe3 sample reaches 96 J·kg-1 in the process of reverse martensitic transformation.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3