Effects of laser irradiation on the photoelectric properties of thermal-annealed metal/fluorine-doped tin oxide transparent conductive films

Author:

Huang Li-Jing ,Ren Nai-Fei ,Li Bao-Jia ,Zhou Ming , , ,

Abstract

Three kinds of bilayer films, i.e. aluminum (Al)/fluorine-doped tin oxide (FTO), copper (Cu)/FTO and silver (Ag)/FTO, are prepared by coating a commercial FTO glass with sputtered metal layers, and subsequently thermally annealed. Then all the as-annealed bilayer films are irradiated using a 532 nm nanosecond pulsed laser. X-ray diffraction (XRD) analysis confirms that all the laser-irradiated films have underwent laser annealing, resulting in an improvement in their photoelectric properties. More significantly, after laser irradiation, the as-annealed Ag/FTO film exhibits the highest increment in average transmittance (400–800 nm) that is increased from 72.6% to 80.5%. This should be attributed mainly to the formation of laser-induced grating structures that have anti-reflection effect on their surfaces. It is also found that the laser irradiation decreases the sheet resistance of the as-annealed Ag/FTO film from 5.6 to 5.3 Ω/sq. The annealing caused by thermal effect of laser irradiation gives rise to an increase in grain size, thereafter reduces carrier scattering at grain boundaries and enhances carrier mobility, which should be responsible for the improvement in conductivity. The calculated results show that after laser irradiation the figure of merit of the as-annealed Ag/FTO film is greatly increased from 0.73×10-2 to 2.16×10-2Ω-1, indicating a significant enhancement in the overall photoelectric property of the film. Laser irradiation can simultaneously achieve fabrication of grating structures and laser annealing, providing a new idea for performance optimization of metal-layer-composited transparent conductive films.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference37 articles.

1. Wang L, Zhang X D, Yang X, Wei C C, Zhang D K, Wang G C, Sun J, Zhao Y 2014 Acta Phys. Sin. 63 028801 (in Chinese) [王利, 张晓丹, 杨旭, 魏长春, 张德坤, 王广才, 孙建, 赵颖 2014 物理学报 63 028801]

2. L M S, Pang Z Y, Xiu X W, Dai Y, Han S H 2007 Chin. Phys. 16 0548

3. Daniel P P, Michael G H, Paul G O, Wang Z B, Navid S, Nazir K, Lu Z H 2011 Nano Lett. 11 1457

4. Xie J S, Chen Q 2014 Chin. Phys. B 23 097703

5. Miyata T, Hikosaka T, Minami T 2000 Sens. Actuators B 69 16

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3