Nonlinear electron transport in superlattice driven by a terahertz field and a tilted magnetic field

Author:

Wang Chang ,Cao Jun-Cheng ,

Abstract

Vertical electron transport in semiconductor superlattice has been the focus of science and technology during the past two decades due to the potential application of superlattice in terahertz devices. When driven by electromagnetic field, many novel phenomena have been found in superlattice. Here we study the chaotic electron transport in miniband superlattice driven by dc+ac electric fields along the growth axis (z-axis) and a magnetic field tilted to z-axis using semiclassical equations of motion in the preflence of dissipation. We calculate the electron momentum by changing the magnetic field or amplitude of the terahertz field. It is shown that the momentum py(t) of miniband electron exhibits complicated oscillation modes while changing the control parameters. Poincaré bifurcation diagram and power spectrum are adopted to analyze the nonlinear electron states. Poincaré bifurcation diagram is obtained by plotting pym = py(mTac) (with m = 1, 2, 3,… and Tac the period of ac terahertz field) as functions of ac amplitude E1 after the transients decay. The periodic and aperiodic regions can be distinguished from each other since there are a large number of points in the chaotic regions. When the magnetic field is increased from 1.5 to 2 T, the Poincaré bifurcation diagram changes dramatically due to the strong effect of magnetic field on electron motion. The oscillating state of py(t) may be changed between periodic and chaotic syates. Power spectra of electron momentum py for different values of E1 (= 2.06, 2.18, 2.388, and 2.72) are calculated for a deep insight into the nonlinear oscillating mode. It is found that the power spectra of n-periodic states show peaks at frequencies ifac/n (with i = 1, 2, 3,…); the power spectra of chaotic states are very irregular with a large number of peaks. We demonstrate that the dissipation and resonance between Bloch oscillation frequency and cyclotron frequency play an important role in the electron transport process. We attribute the emerging of periodic and chaotic states in a superlattice to the interaction between terahertz radiation and internal cooperative oscillating mode related to Bloch oscillation and cyclotron oscillation. In the case of ωB≠iωc, the time-dependent electron motion is chaotic in most regions of the parameter space. Results of the preflent paper are useful for designing terahertz devices based on the semiconductor superlattices.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3