An improved high performance Lorenz system and its application

Author:

Guan Guo-Rong ,Wu Cheng-Mao ,Jia Qian , ,

Abstract

Lorenz system is one of the most typical chaotic system models, and it has been well studied and widely applied. In order to obtain more complex structure and dynamic behavior of chaotic attractor for Lorenz system, improving the Lorenz system has become one of the important tasks in chaotic dynamical system. Therefore, an improved Lorenz system with complex dynamic behavior is proposed and used to protect image information security. Based on the existing various improvement Lorenz systems, firstly, a new Lorenz chaotic system is constructed by increasing the control parameters and modifying nonlinear expression in the existing Lorenz chaotic system; secondly, the mathematical properties of dissipation, symmetry, and stability in the proposed Lorenz system, which are similar to those in the existing Lorenz system, Bao system, Tee system and Y system, are investigated by modern differential dynamical system, and the experimental results of Lyapunov index and random sequence correlation of five different Lorenz systems show that the proposed Lorenz system has a more complex structure and chaotic dynamic behavior; finally, the discrete pseudo random sequences generated by five different Lorenz chaotic systems are used for scrambling the pixel position and diffusing the pixel value to protect image information security. The analyses of correlation and statistic histogram entropy of adjacent pixels, anti-differential attack and key sensitivity of the encrypted image, indicate that the improved Lorenz system proposed in this paper has much better potential advantages than other existing improved Lorenz system in image encryption application.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference36 articles.

1. Lorenz E N 1963 J. Atmos. Sci. 20 113

2. Pareek N K,Patidar V,Sud K K 2006 Image Vision Comput. 24 9

3. Rhouma R, Belghith S 2008 Phys. Lett. A 372 38

4. Singh N, Sinha A 2009 Opt. Commun. 282 6

5. Cui L, Ou Q L, Zhang H Q 2010 Commun. Technol. 5 43 (in Chinese) [崔力, 欧青立, 张红强 2010 通信技术 5 43]

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3