Effect of Ni2O3 doping on the properties of single domain GdBCO bulk superconductors fabricated by a new modified top-seeding infiltration and growth process

Author:

Guo Li-Ping ,Yang Wan-Min ,Guo Yu-Xia ,Chen Li-Ping ,Li Qiang ,

Abstract

Single-domain GdBCO bulk superconductor (20 mm in diameter) has been fabricated by a top-seeding infiltration and growth (TSIG) mathod, it has a new solid phase of [(1-x)(Gd2O3+1.2BaCuO2) + x Ni2O3] (where x =0, 0.02, 0.06, 0.10, 0.14, 0.18, 0.30, 0.50 wt%). Effect of Ni2O3 additions on the growth morphology, microstructure, critical temperature Tc, magnetic levitation force, and trapped flux of single-domain GdBCO bulks have been investigated. Results show that the single-domain GdBCO bulk can be gained when x is in the range of 0-0.50 wt%; and the Gd211 particles are not affected by the Ni2O3 doping in the samples. The Tc of the samples decrease from 92.5 K (x=0 wt%) to 86.5 K (x=0.50 wt%) when x increases from 0 to 0.50 wt%, which is caused by the substitution of Ni3+ for Cu2 +. Both of the levitation force and trapped field of the samples increase first and then decrease with the increase of x; the largest levitation force of 34.2 N is obtained for the samples with x=0.14 wt%, and the largest trapped field of 0.354 T is obtained for the samples with x=0.10 wt%. The change of the levitation force and trapped field of the samples is closely related to the doping content x. As is known, the doping of Ni2O3 can result in substitution of Ni3+ for Cu2+ at its site in GdBCO crystals, which can reduce the critical temperature Tc of the samples; although Tc and the physical properties of the samples is reduced with the increase in the doping amount of Ni2O3, but at the same time, the substitutions of Ni3 + for Cu2 + in GdBCO crystals can produce local lattice distortions, which can act as magnetic flux pinning centers to improve the properties of the samples. The highest Tc is obtained in the samples without any Ni2O3 additions (x=0), but the magnetic flux pinning force of the samples is weak, so both of the levitation force and trapped field of the samples are relatively lower. When the doping content x ≤ 0.14 wt%, although the Tc is reduced slightly, it still has a value higher than 90 K; and the magnetic flux pinning force in the samples, due to the substitutions of Ni3+ for Cu2 +, would increase with the increase of doping content x, and result in an enhancement of levitation force and trapped field. When the doping content x is greater than 0.14 wt%, the magnetic flux pinning force of the samples is still increasing with the increase of x, but the Tc of the sample is significantly reduced and even less than 90 K, and finally result in an decrease of levitation force and trapped field. Only when the doping amount of Ni2O3 is appropriate, both of Tc and magnetic flux pinning force are of a relative optimal value, and lead to an enhancement of levitation force and trapped field.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3