Stable components in extended-range forecasting during the continuous high temperature event in August 2013 over the mid-eastern China

Author:

Zeng Yu-Xing ,Ye Tian-Shu ,Wang Kuo ,Shen Qian ,

Abstract

Based on the continuous high temperature process over the mid-eastern China in August 2013, using the NCEP/NCAR (United States National Centers for Environmental Prediction/National Center for Atmospheric Research) daily average of 500 hPa height field, the wind field reanalysis data, and the NOAA (National Oceanic and Atmospheric Administration) reconstruction sea surface temperature (SST) data, through the selection method similar to the early adoption of SST forcing, band-pass filtering and empirical orthogonal function decomposition method to extract the 10-30 days of stable components, and through a stable component of diagnostic analysis, we investigate the mechanisms for sustaining and reducing high temperature process. Results show that by selecting and using the case that is the most similar to a pre-SST forcing 30-year climatology instead of the normal 30-year climatology (1981-2010), the steady-state component extracted climate proportion is reduced, and the proportion of anomalously stable components is significantly enhanced and the described influence strength and stability are improved significantly, which can more clearly show the extended maintenance mechanism of weather processes. It suggests that early consideration SST forcing in the extraction component is very necessary. Meanwhile, the analysis of extension of stable components shows that the process of maintaining and reducing high temperature is mainly caused by the combined effect of the Arctic Oscillation, continental high latitudes zonal circulation situation in Asia and the western Pacific subtropical high intensity and location.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference21 articles.

1. Chou J F 2012 Chin. J. Geophys. 55 1433 (in Chinese) [丑纪范 2012 地球物理学报 55 1433]

2. Lorenz E N 1965 Tellus 17 321

3. Lorenz E N 1969 J. Atmos. Sci. 26 636

4. Lorenz E N 1982 Tellus 34 505

5. Li C Y 1990 Chin. J. Atmos. Sci. 14 32 (in Chinese) [李崇银 1990 大气科学 14 32]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3