Physiochemical properties and crystallization behavior of GeS2-In2S3 chalcogenide glasses

Author:

Lin Chang-Gui ,Zhai Su-Min ,Li Zhuo-Bin ,Qu Guo-Shun ,Gu Shao-Xuan ,Tao Hai-Zheng ,Dai Shi-Xun , ,

Abstract

Relationship among the composition, properties, and structure of glasses are one of the long standing topics in glass science. In this paper, (100-x) GeS2-xIn2S3 (x=10, 15, 20, 25 or 30 mol%) glasses and glass-ceramics are prepared by melt-quenching and subsequent heat treatments. Their composition dependence of optical bandgap, glass transition temperature, and crystallization behavior is measured by various techniques, and the effect of Ga or In element and the related structural units on their properties is discussed with the help of the previous researches on the GeS2-Ga2S3 glass system. Results show that In has a much bigger influence than Ga on the optical bandgap and glass transition temperature of chalcogenide glasses, while the crystallization behavior of the two kinds of glasses containing Ga and In is totally different, but has a close connection with the respective phase diagram. Their structural motifs can be realized by employing polarized Raman spectra. Consequently, combined with the recognition of their phase diagrams, the composition dependence of physiochemical properties and crystallization behavior, as well as the structural motifs, the correlation between chemical and structural topology is briefly discussed, which may provide a new insight into the glass topological structure.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tl2S–In2S3–GeS2 Glass System as Novel Promising Materials for Photonics;Фізика і хімія твердого тіла;2019-12-15

2. Chalcogenide glass-ceramics: Functional design and crystallization mechanism;Progress in Materials Science;2018-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3