Characterizations of clusters generated by pure xenon and hydrogen xenon gas mixture at room temperature

Author:

Zhao Jia-Rui ,Li Yi-Fei ,Ma Jing-Long ,Wang Jin-Guang ,Huang Kai ,Han Yu-Jing ,Ma Yong ,Yan Wen-Chao ,Li Da-Zhang ,Yuan Da-Wei ,Li Yu-Tong ,Zhang Jie ,Chen Li-Ming , , ,

Abstract

Rayleigh scattering method can be used to investigate the cluster size and the cluster formation process, and its advantages are that it is easy to perform and non-disruptive. In this paper, by measuring the Rayleigh scattering intensities of clusters generated respectively in pure xenon gas and hydrogen-xenon gas mixture, the relationships of Rayleigh scattering intensity to time, backing pressure, and mixture ratio are studied, and according to these relationships, the average sizes of clusters under different conditions are estimated. Through the scaling law of the Rayleigh scattering intensity obtained in hydrogen-xenon gas mixture with respect to upstream gas pressure, i.e., I= (1.5 10-5)P6.47, the hydrogen of mixed gas is found to be conducible to the generating of xenon clusters. The advantages of hydrogen-xenon gas mixture for generating clusters are analyzed theoretically from the perspective of thermodynamics and intermolecular forces, and a new phenomenon, i.e., the hydrogen xenon gas mixture is not easy to liquefy, is found. This finding provides a new way to generate larger size clusters. Our results are expected to provide guidelines for the future experimental researches of the X-ray generated by xenon clusters and of the neutron generated by the deuterium-xenon mixture gas.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3