Terahertz spectrum and simulation of the phase transformation of FOX-7

Author:

Meng Zeng-Rui ,Zhang Wei-Bin ,Du Yu ,Shang Li-Ping ,Deng Hu , , , ,

Abstract

1, 1-diamino-2, 2-dintroethylene (FOX-7) is a novel explosive of high energy and low sensibility. In order to study the effect of temperature changes on the molecular structural characteristics of the explosive, its absorption spectra in the frequency range of 0.2–2.5 THz at a constant rate of heating from 298 K to 393 K are detected by terahertz time-domain spectroscopy (THz-TDS). Results show that a number of characteristic absorption peaks with different intensities appear at 1.59–2.13 THz when the temperature is 298 K, while the absorption spectra change with the increase of temperature of the explosive sample; a new characteristic absorption peak located at 1.12 THz appears at 384 K, and its absorption peak intensity gradually increases, but disappears when the temperature drops to 298 K. The absorption spectra of FOX-7 molecular crystal at 298 and 393 K within the 0.2–2.5 THz region based on density functional theory (DFT) are also simulated by using Materials Studio 6.0 software in this article, and the simulated results agree well with the experimental data. In addition, the vibrational modes of the characteristic peaks of two kinds of crystalline in the experimental absorption spectra are analyzed and identified, showing that the formation of the characteristic absorption peaks is closely related to the molecular vibration, and the molecular structure may change under the influence of temperature, and the tautomeric polymorphism of the crystalline has different vibrational modes. This article indicates that the process of phase transformation of FOX-7 starts from 384 K, and this process is reversible; the characteristic absorption peak at 1.12 THz is composed of two kinds of vibrations (the swinging and torsional vibrations of the nitro and amido groups).

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3