Near classical states of three-dimensional isotropic harmonic oscillator in spherical coordinate system

Author:

Li Xing-Hua ,Yang Ya-Tian ,

Abstract

One can easily understand the transition from special relativity to Newton mechanics under the condition of v/c 1. But it is not so easy to understand the transition from quantum representation to classical representation from the point of view of wave mechanics. We define such a quantum state as near classical state (NCS), in which the mean value of coordinates equals the classical solution on a macroscopic scale. We take the NCS for three-dimensional isotropic harmonic oscillator in a spherical coordinate system for example. We take and choose cnl =(1/(2N+1))(1/(2lM+1)). The mean values of coordinates are r2 =(Ecl)/(2)(1+1-((2Lcl2)/(Ecl2)cos(2t)) and tg = (Ecl/lcl)[1-1-((Lcl)/(Ecl)2]tg(t)) in this NCS, which are in agreement with the classical solution on a macroscopic scale, where N/N1, lM/lM1. N and lM are determined by the macroscopic state. N =[(Ecl)/(ħ)], Ecl = 1/22(a2+ b2) , lM= [Lcl}/ħ], and Lcl = ab. Here , Ecl and Lcl respectively denote the mass, the energy and the angular momentum of harmonic oscillator. And the bracket [c] means taking the integer part of the number c, for example [2.78]=2. It is also emphasized that for a definite macro state, there are many NCS corresponding to a macro state; just like the case in statistical physics, many micro dynamical states correspond to a macro thermodynamic state. Thus the transition from quantum representation to classical representation is a coarse-graining process and also an information losing process.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference19 articles.

1. Feynman R P, Hibbs A R 1965 Quantum Mechanics and Path Integrals (New York: McGraw-Hill)

2. Zeng J Y 2002 Quantum Mechanics Vol I (3nd Ed.) (Beijing: Science Perss) p14 (in Chinese) [曾谨言 2002 量子力学卷I (第3版) (北京: 科学出版社) 第14页]

3. Bohr N 1920 Z. Phys. 2 423

4. Bohr N 1992 The Theory of Spectra and Atmic Constitution (Cambridge: Cambridge University Press)

5. Zeng J Y 2000 Quantum Mechanics Vol II (3nd Ed.) (Beijing: Science Perss) pp73, 74 (in Chinese ) [曾谨言 2000 量子力学 卷II(第3版) (北京: 科学出版社) 第73, 74页]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3