Influence of Gaussian function index of deformable mirror on iterative algorithm adaptive optical system
-
Published:2015
Issue:9
Volume:64
Page:094207
-
ISSN:1000-3290
-
Container-title:Acta Physica Sinica
-
language:
-
Short-container-title:Acta Phys. Sin.
Author:
Cheng Sheng-Yi ,Chen Shan-Qiu ,Dong Li-Zhi ,Wang Shuai ,Yang Ping ,Ao Ming-Wu ,Xu Bing , , , ,
Abstract
Among all kinds of wavefront reconstruction algorithms in adaptive optical systems, the standard and mostly used algorithm is the direct gradient wavefront reconstruction algorithm. As the number of sub-apertures in Shack-Hartmann wavefront sensor and the actuators for deformable mirror increases, the reconstruction matrix in direct gradient wavefront reconstruction algorithm takes too much space and the number of multiplication in the algorithm increases sharply. So, the iterative algorithm is adopted in wavefront reconstruction for the high-resolution adaptive optical system. The number of multiplication and the required space of the iterative algorithm are directly related to the sparseness of both iterative matrix and slope response matrix. In an adaptive optical system, the sparseness of these two matrixes is connected with the system parameters. Therefore, it is necessary to study how to choose the proper parameters for an adaptive optical system when it uses iterative wavefront reconstruction algorithm. In this paper, the sparseness of slope response matrix and iterative matrix are analyzed based on a 613-actuator adaptive optical system. The influence of the Gaussian function index of deformable mirror on the sparsenesses of slope response matrix, iterative matrix, stability and correction qualities of the adaptive optical system are also studied under the condition of constant actuator spacing and coupling coefficient. A larger Gaussian function index results in a lower sparseness of the slope response matrix and the iterative matrix. Too large or too small a Gaussian function index will degrade the stability and the correction quality of an adaptive optical system. Finally, the optimal range of the Gaussian function index is provided by balancing the sparseness of slope response matrix, the correction quality, and the stability of the adaptive optical system.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference18 articles.
1. Jiang W H, Zhang Y D, Rao C H, Ling N, Guan C L, Li M, Yang Z P, Shi G H 2011 Acta Optica Sinaca 31 9 (in Chinese) [姜文汉, 张雨东, 饶长辉, 凌宁, 官春林, 李梅, 杨泽平, 史国华 2011 光学学报 31 9] 2. Jiang W H 2006 Chinese Journal of Nature 28 1 (in Chinese) [姜文汉 2006 中国自然杂志 28 1] 3. Zhang L Q, Gu N T, Rao C H 2013 Acta. Phys. Sin. 62 169501 (in Chinese) [张兰强, 顾乃庭, 饶长辉 2013 物理学报 62 169501] 4. Ren Z J, Liang X Y, Liu M B, Xia C Q, Lu X M, Li R X, Xu Z Z 2009 Chin. Phys. Lett. 26 124203 5. Yu L H, Liang X Y, Ren Z J, Wang L, Xu Y, Lu X M, Yu G T 2012 Chin. Phys. B 21 014201
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|