Author:
Wang Qing ,Qiang Jian-Bing ,Wang Ying-Min ,Xia Jun-Hai ,Lin Zhe ,Zhang Xin-Fang ,Dong Chuang ,
Abstract
The present paper investigates the formation and composition characteristics of Cu-based bulk metallic glasses (BMGs) in the inter-transition metal system Cu-Zr-Ti by using an “e/a-variant criterion” which is relevant to clusters. Three such composition lines, (Cu9/13Zr4/13)100-xTix, (Cu0.618Zr0.382)100-xTix and (Cu0.56Zr0.44)100-xTix, are defined in the Cu-Zr-Ti system. Among them, Cu9Zr4, Cu61.8Zr38.2 and Cu56Zr44 are specific Cu-Zr binary cluster compositions. Alloy compositions are designed along these three composition lines, and alloy rods with diameter of 3mm are prepared by copper mould casting. X-ray and TEM analysis show that BMGs are formed within Ti content range of x=7.5%—15%, x=7.5%—12.5% and x=5%—12% respectively along these three lines. Thermal analysis results further indicate that these BMGs have igher thermodynamic Tg,Tx,Tg/Tl and γ values, and these values of BMGs on every composition line decrease with increasing Ti content. The optimum BMG composition in this system is Cu64Zr28.5Ti7.5 on the (Cu9/13Zr4/13)100-xTix series, which also has the highest hardness and activation energy of crystallization. The characteristic parameters of this BMG are Tg=736K, Tx=769K, Tg/Tl=0.627,γ=0.403, Hν= 6.74GPa and ΔE=3.88 eV, which are all superior to those of the reported BMG Cu60Zr30Ti10.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献