Methods of analytical mechanics for dynamics of the Kirchhoff elastic rod

Author:

Xue Yun ,Liu Yan-Zhu ,Chen Li-Qun ,

Abstract

A cross section of the rod is taken as object of investigation. The freedom of the section in free or constraint case is analyzed and the definition of virtual displacement of the section is given, which can be expressed by a variational operation. Assuming the variational and partial differential operations has commutativity, based on the hypothesis about surface constraint subjected to the rod, the freedom of the section on constraint surface is discussed and the equations satisfied by virtual displacements of the section are given. Combining D'Alembert principle and the principle of virtual work, D'Alembert-Lagrange principle is established. When constitutive equation of material of the rod is linear, the principle can be transformed to Euler-Lagrange form. From the principle, a dynamical equation in various forms such as Kirchhoff, Lagrange, Nielsen and Appell equation can be derived. For the case when a rod is subjected to a surface or a nonholonomic constraint, Lagrange equation with undetermined multipliers is obtained. Integral variational principle of dynamics of a super-thin elastic rod is also established, from which Hamilton principle formulation is obtained when the material of the rod is linear. Finally, canonical variables to describe the state of the section and Hamilton function are defined, and Hamilton canonical equation is derived. The analytical methods of dynamical modeling of a super-thin elastic rod have been constructed, which can serve as a theoretical framework of analytical dynamics of a super-thin elastic rod with two independent variables.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3