Author:
Xu Jian ,Chen Xiao-Yu ,Li Hai-Tao ,
Abstract
Graph states are multipartite entangled states that correspond to mathematical graphs, where the vertices of the graph now play the role of quantum multilevel systems and edges represent interactions of the systems. Graph states are the basis of quantum error correction and one-way quantum computer. We systematically study the entanglement of non-binary graph states. Using iterative algorithm and entanglement bounds, we calculate the entanglement of all the ternary graph states up to nine vertices and parts of quaternary and quinary graph states modulo local unitary transformations and graph isomorphisms. The entanglement measure can be the geometric measure, the measure of relative entropy of entanglement or the measure of logarithmic robustness. We classify the graph states according to the entanglement values obtained. The closest product states obtained in the calculations are studied.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献