Group similarity based algorithm for network community structure detection

Author:

Yuan Chao ,Chai Yi ,

Abstract

Community structure has an important influence on the structural and dynamic characteristics of the complex system. In the present study, a group similarity model is proposed for the measurement of similarity between two communities. So it can help us understand the mechanism of inter action between these communities. Moreover, based on this model, a hierarchical clustering based algorithm for network community structure detection is put forward. By this algorithm, one pair of communities with the largest similarity is merged in each iteration. And then an evaluation function is adopted for choosing the optimal partition. The algorithm gives a higher performance than many state-of-the-art community detection algorithms when tested on a series of real-world and synthetic networks. Especially, it performs better when the edge density of the network is high.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3