Breakdown vovtage analysis of new AlGaN/GaN high electron mobility transistor with the partial fixed charge in Si3N4 layer

Author:

Duan Bao-Xing ,Yang Yin-Tang ,Kevin J. Chen , ,

Abstract

In order to optimize the surface electric field of the traditional AlGaN/GaN high electron mobility transistor and improve the breakdown voltage and reliability, a new AlGaN/GaN high electron mobility transistor is proposed with the partial fixed positive charges in the Si3N4 passivation layer in this paper. The partial fixed positive charges of the Si3N4 passivation layer do not affect the polarization effect of the AlGaN/GaN heterojunction. The surface electric field tends to the uniform distribution due to the new electric field peak formed by the partial fixed positive charges, which modulates the surface electric field by applying the electric field modulation effect. The high electric fields near the gate and drain electrode decrease due to the new electric field peak. The breakdown voltage is improved from the 296V for the traditional structure to the 650V for the new structure proposed. The reliability of the device is improved due to the uniform surface electric field. The effect of the electric field modulation is explained by the horizontal and vertical electric field distribution between the Si3N4 and AlGaN interface, which provides a scientific basis for designing the new structure with the partial fixed positive charges in the Si3N4 layer. Because of the fixed positive charge compensation, the two-dimensional electron gas concentration increases, and the on-resistance decreases. So, the output current of the new structure increases compared with that of the traditional AlGaN/GaN High Electron Mobility Transistor.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3