Influence of annealing temperature on the microstructure and photoluminescence of ZnO films

Author:

Sun Cheng-Wei ,Liu Zhi-Wen ,Zhang Qing-Yu ,

Abstract

ZnO thin films with strong c-axis prefered orientation have been successfully deposited on Si(100) substrate at 750℃ by using reactive radio frequency magnetron sputtering. The influence of annealing temperature ranging from 600 to 1000℃on the microstructure and photoluminescence (PL) properties of ZnO films was investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence measurement at room temperature. The XRD and TEM results show that the grain size of ZnO film increases and the residual stress in the film is tensile and remains constant at about 1 GPa with the increase of annealing temperature below 900℃. After annealed at 1000℃, the grain size decreases and the residual stress in the film changes into compressive with the value about -2 GPa. The PL spectra of the ZnO films show two emission bands, namely that originating from ultraviolet (UV) exciton transition and the visible defect photoluminescence. The intensity of UV PL spectrum and the relative intensity of fferent exciton emission are dependent on the grain size and defects in the ZnO film. The red shift of UV PL spectrum results from the change of the relative intensity of different exciton emission with annealing temperature. The visible PL spectrum is sensitive to the change of annealing temperature. The relationship between PL spectra and microstructure and defects in the films is discussed.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3