Theoretical computation and numerical simulation of the relaxation of sphere-capillary model saturated with oil and water
-
Published:2008
Issue:1
Volume:57
Page:550
-
ISSN:1000-3290
-
Container-title:Acta Physica Sinica
-
language:
-
Short-container-title:Acta Phys. Sin.
Author:
Xu Feng ,Liu Tang-Yan ,Huang Yong-Ren ,
Abstract
According to Brownstein-Tarr theory and using the series expansion method, the Bloch equations controlled by diffusion effect are solved for double-phase pore space of sphere-capillary model saturated with oil and water, and the theoretical relaxation computational formulas for the sphere-capillary model are obtained. The result shows that the relaxation process of oil is only related to oil saturation and isn't associated with pore structure on the condition of wetness. A great deal of computation simulations were carried out based on the theoretical computational formulas, and the numerical simulation results show that the main relaxation process of sphere or capillary is a single exponential function and the other relaxation processes are negligible. In other words, the relaxation of sphere-capillary model is approximatively a double exponential descending process.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献