Studies on nanosecond laser induced damage to fused fibers

Author:

Zhao Xing-Hai ,Gao Yang ,Xu Mei-Jian ,Duan Wen-Tao ,Yu Hai-Wu ,

Abstract

The properties of high_peak pulsed laser induced damage to fibers have been investigated by damage experiments. It was found that all of damaged parts are located on fiber endings, and the damage topography fall into three classes: the pit damage, fusion damage and sputtering damage. The experimental setup of laser induced damage to fibers, fiber damage judgment criterions and data processing methods were developed and validated. The zero probability damage threshold was calculated by linear fitting to be 3.85GW/cm2. The processes of laser induced damage to fibers were summarized and the fiber end face damage mechanism was studied. The experimental results indicated that the main factor that makes the fiber end faces susceptible to laser induce damage is the existence of surface imperfections. The nanosecond laser induce damage to fiber end faces are detected experimentally; the central areas of input end faces are damaged probably because the input laser beam is Gaussian. So the use of uniform beam for injecting the fiber is favorable to the laser-induced damage resistance.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3