Investigation on surface damage phenomena induced by flashover across semiconductor

Author:

Zhao Wen-Bin ,Zhang Guan-Jun ,Yan Zhang ,

Abstract

The flashover across semiconducting materials disables many high power semiconductor devices from their further application under high electric field. Up to now, the physical mechanism of the flashover was still not understood clearly. Surface flashover experiments of silicon and gallium arsenide were performed under pulsed high voltage. The filament current channels on their surface were observed in the infrared photographs, and the infrared radiation bright spot was found in the central region between the electrodes. On the surface of different samples undergone flashover events for several times, the filament damage phenomena were observed, and for the n100 silicon sample, some circular pits were found around the filament channel, with a conical jut in the center of each pit. According to the damage phenomena at the edge of electrodes, the thermal injection and relaxation characteristics of majority carriers were discussed. An injection model induced by minority carriers was proposed, which emphasizes the surface field enhancement by non-equilibrium carrier channel, which possibly leads to the ionization of the ambient gas above the filament channel. The model was consistent with the observed experimental results.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3