An evaluation criterion of infrared image complexity based on background optimal filter scale

Author:

Hou Wang ,Mei Feng-Hua ,Cheng Guo-Jun ,Deng Xi-Wen ,

Abstract

An evaluation of infrared image complexity is proposed based on the background optimal filtering to solve the problem that the traditional methods have given poor results in the background evaluation. Meanwhile, the optimal filtering scale for infrared image filtering can be given by this method, it will provide a guidance for optimal infrared image filtering. First, we generate the Gaussian simulated target and fuse it to the infrared image to obtain the real infrared image with the simulated target. Then, this image is filtered in different scales and the signal-to-noise ratio of the target after filtering is calculated. Finally, the maximal value of signal-to-noise ratio of the target is used as the background optimal filter scale, to evaluate the infrared image complexity. Besides, the infrared filtering scale is deduced by establishing the mathematic model, and then the mathematical expression of optimal filtering scale is obtained. A lot of experiments indicate that: 1) The mathematical expression of optimal filtering scale agrees with the experimental results. 2) The result of our method is better than that of the traditional methods based on information entropy. Because the optimal filtering scale is obtained by using our method, we can use this scale to filter the infrared image to effectively detect a small target. 3) When the scale of simulated target increases, the optimal filtering scale increases accordingly. So, when we calculate the infrared image complexity, the scale of simulated target must be the same. We can compare the infrared image complexity between different images. Moreover, the optimal filtering scale is independent of the intensity of simulated target. 4) The effect of Gaussian and Butterworth high-pass filter is better than that of the ideal high-pass filter in the proposed method. 5) The infrared image complexity can be analyzed by the proposed method effectively. Moreover, changes of different image contents can be analyzed by using the optimal filtering scale.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference27 articles.

1. Zhou B, Wang Y Z, Ying J J 2007 Infrared Technology 25 30 (in Chinese) [周冰, 王永仲, 应家驹 2007 红外技术 25 30]

2. Zhang H J, Liang Y, Cheng Y M, Pan Q, Zhang H C 2006 Infrared Technology 28 423 (in Chinese) [张惠娟, 梁彦, 程咏梅, 潘泉, 张洪才 2006 红外技术 28 423]

3. Chen Y 1989 IEEE Transactions on Aerospace and Electronic Systems 25 343

4. Reed I S, Gagliardi R M, Stotts L B 1990 IEEE Transactions on Aerospace and Electronic Systems 26 434

5. Gao C Q, Zhan T Q, Li Q, Jing X R 2008 Journal of Chongqing University of Posts and Telecommuni cations(Natural Science Edition) 37 907 (in Chinese) [高陈强, 张天骐, 李强, 景小荣 2010 重庆邮电大学学报 (自然科学版) 37 907]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3