Generation of no-diffraction hollow vertex beams with adjustable angular momentum by wave plate phase plates

Author:

Shi Jian-Zhen ,Xu Tian ,Zhou Qiao-Qiao ,Ji Xian-Ming ,Yin Jian-Ping , ,

Abstract

In this article, a new scheme is proposed to generate approximately no-diffraction hollow vertex beams by wave plates. By selecting the appropriate thickness values of wave plates based on the properties of the double refraction, four-step-phase plates for o-light or e-light are formed. With linearly polarized light irradiated at the phase plate, the diffractions of o-light and e-light would overlap according to their intensities. By focusing effect of quasi-Galileo telescope system, a no-diffraction hollow vertex beam can be generated. In this scheme, the optical path is simple and convenient to adjust. Under the adaxial condition, the distributions of diffraction intensity and angular momentum of two wave plates at the numbers of cycles, s=1 and s=4, are numerically simulated according to Fresnel diffraction theory and classical electromagnetic field angular momentum theory. Simulation results indicate that the approximately no-diffraction hollow vertex beams can be generated by each of two phase plates within a long distance. The distributions of intensity and the angular momentum are essentially the same as those generated by spiral phase plates at the same number of cycles. The distributions of intensity and the angular momentum are different at different numbers of cycles s. If s increases, the diffraction bright ring radius increases, the intensity decreases and the average orbital angular momentum increases. At s=4, the length of no-diffraction region is significantly greater than at s=1 and the average orbital angular momentum is four times that at s=1. Within the no-diffraction region, the distribution of orbital angular momentum intensity varies with distance but the total angular momentum is constant. A phase compensator is inserted in the diffraction path to adjust the phase difference between o-light and e-light. Whereas the spin angular momentum of the diffraction light can be adjusted by them, and thus the total angular momentum intensity and average photon angular momentum can be adjusted. This scheme can be utilized to guide the cold atoms or molecules to obtain the adjustable torque throughout the interacting process of atoms and photons.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Precise controll of hollow beam size;Acta Physica Sinica;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3