Influence of polarization on irradiating LiF crystal by femtosecond laser

Author:

Wang Cheng-Wei ,Zhao Quan-Zhong ,Zhang Yang ,Wang Guan-De ,Qian Jing ,Bao Zong-Jie ,Li Yang-Bo ,Bai Feng ,Fan Wen-Zhong , , ,

Abstract

The processing morphology of cubic crystal LiF irradiated by femtosecond laser varies with the polarization direction. When the polarization direction is parallel to the crystal orientation 110, the distance between the starting point and the surface is 1.08 times that along 100 polarization, and the distance between the end point and the surface is 1.01 times. While the cubic crystal is irradiated by a femtosecond laser, self-focusing and inverse bremsstrahlung are two probable mechanisms dependent on polarization. In order to investigate the relation between the self-focusing and polarization, in this paper we report the nonlinear refractive index n2 of LiF crystal which is linear with respect to selffocusing coefficient. The Z-scan technique is used to measure the nonlinear refractive indexes at different polarizations. As the polarization direction is rotated from 110 to 100, the nonlinear refractive index decreases, and the self-focusing effect becomes weaker. If self-focusing leads to the dependence of morphology on polarization, the distance between the starting point and the surface for 100 polarization should be longer than that for 110 polarization. However, the experiment exhibits an opposite result that the distance between starting point and the surface for 100 polarization is shorter than that for 110 polarization. Therefore, the processing morphology which changes with polarization is not a consequence of the self-focusing. So in order to understand why the processing morphology varies with polarization, in this paper we present a model which combines inverse bremsstrahlung, avalanche ionization and radiationless transition. We believe that the recombination due to radiationless transition has a great effect on laser machining. The inverse bremsstrahlung coefficient of 110 polarization is less than that of 100 polarization, as a result, the density of free electrons which are produced by inverse bremsstrahlung and avalanche ionization at 110 polarization is less than that at 100 polarization. At first, the laser energy is transferred to the free electrons by inverse bremsstrahlung and avalanche ionization, which is described by the paraxial nonlinear Schrodinger equation and evolution equation of electron density. The density of free electrons is obtained by solving the equations. Then free electrons transfer the energy to the crystal lattice in the process of recombination through radiationless transition, which is depicted by energy conservation and gives the distribution of lattice temperature along the propagation direction. Finally, the area in LiF crystal of which the lattice temperature climbs up to above the melting point is processed. According to the simulation, the distance between the starting point and the surface at 110 polarization is 1.03 times that at 100 polarization, and the distance between the end point and the surface at 110 polarization is 0.981 times that at 100 polarization. These are consistent with the experimental results. Simulation and experimental results demonstrate that the inverse bremsstrahlung, which is dependent on polarization, is the main reason for morphology changing with the polarization of femtosecond laser. These research results may contribute to inducing microstructure in transparent dielectrics through femtosecond laser.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3