Recent experimental progress in low-dimensional superconductors

Author:

Zhang Xi ,Liu Chao-Fei ,Wang Jian , ,

Abstract

Superconductivity is one of the most important research fields in condensed matter physics. The rapid development of material preparation technology in last few years has made the experimental study of low-dimensional physical superconducting properties feasible. This article gives a brief introduction on superconductivity and technology of low-dimensional material fabrication, and mainly focuses on the experimental progress in electrical transport studies on one-and two-dimensional superconductors, especially the results from our group. As for one-dimensional superconductivity, we review the superconductivities in single crystal Bi nanowires, crystalline Pb nano-belts, and amorphous W nanobelts, and the proximity effects in superconducting nanowires, metallic nanowires, and ferromagnetic nanowires. Surface superconductivity is revealed for crystalline Bi nanowire. The step-like voltage platforms in V-I curves are observed in Pb nano-belts and may be attributed to phase slip centers. Besides, vortex glass (VG) phase transition is discovered in amorphous W nano-belts. Inverse proximity effect is detected in crystalline Pb nanowires with normal electrodes, and proximity induced mini-gap is found in crystalline Au nanowire with superconducting electrodes. Furthermore, in crystalline ferromagnetic Co nanowire contacted by superconducting electrodes, unconventional long range proximity effect is observed. As for two-dimensional superconductivity, we review the superconductivities in Pb thin films on Si substrates, 2 atomic layer Ga films on GaN substrates, and one-unit-cell thick FeSe film on STO substrates grown by molecular beam epitaxy (MBE) method. By both in situ scanning tunneling microscopy/spectroscopy and ex situ transport and magnetization measurements, the two-atomic-layer Ga film with graphene-like structure on wide band-gap semiconductor GaN is found to be superconducting with Tc up to 5.4 K. By direct transport and magnetic measurements, the strong evidences for high temperature superconductivities in the 1-UC FeSe films on insulating STO substrates with the onset Tc and critical current density much higher than those for bulk FeSe are revealed. Finally, we give a summary and present a perspective on the future of low dimensional superconductors.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference103 articles.

1. Meissner W, Ochsenfeld R 1933 Naturwissenschaften 21 787

2. Tinkham M 1996 Introduction to Superconductivity (2nd Ed.) (New York: McGraw-Hill Inc.) pp43-108

3. Landau L D, Ginzburg V I 1950 Zh. Eksp. Teor. Fiz 20 546

4. Singh M, Wang J, Tian M L, Mallouk T E, Chan M H W 2011 Phys. Rev. B 83 220506

5. Singh M, Wang J, Tian M L, Zhang Q, Pereira A, Kumar N, Mallouk T E, Chan M H W 2009 Chem. Mater. 21 5557

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3