Chaos and fractal properties of solar activity phenomena at the high and low latitudes

Author:

Zhou Shuang ,Feng Yong ,Wu Wen-Yuan , ,

Abstract

The solar magnetic activity is produced by a complex dynamo mechanism and exhibits nonlinear dissipation behavior in nature. The chaotic and fractal properties of solar activity phenomena are of great importance for understanding the nonlinear dynamo actions, especially nonlinear dynamo models. To study the chaotic and fractal properties of solar activity phenomena at the high-and low-latitudes, the polar faculae and sunspot numbers in the time interval from 1952 February to 1998 June are used to investigate their nonlinear dynamical behavior by the recurrence analysis method and Grassberger-Procaccia (G-P) algorithm. Firstly, the monthly average value of both polar faculae and sunspot numbers are smoothed to filter the noisy signal by the 13-point smoothing method. This procedure can keep the original dynamical information. Secondly, the correlation coefficient of these two solar activity indicators is analyzed, and the analysis results indicate that there is a negative correlation between polar faculae and sunspot numbers. To obtain more accurate results, the recurrence quantification analysis (RQA) is used to obtain the average value of the rate of DET by selecting four groups of different parameters. And then, we use the G-P algorithm to draw the correlation integral curve graphs and to obtain the correlation dimension of polar faculae and the sunspot numbers. Finally, the analysis results given by RQA and G-P algorithm are analyzed and compared by advanced statistical method. The main conclusions of this paper are as follows. 1) From a statistical point of view, the chaotic and fractal properties of high-and low-latitudes solar activity are different between in the northern hemisphere and in the southern hemisphere, owing to the fact that the temporal variation of solar activity is closely related to the magnetic field evolution. This result is in agreement with the previous results given by the polar faculae. It should be pointed out that this result is not the main goal of this article, we only reinforce this conclusion by the recurrence analysis and G-P algorithm. 2) The chaotic behaviors of solar magnetic activity at high latitude are stronger than at low latitude. Furthermore, the high-latitude solar activity in the northern hemisphere has the most complex fractal structure. Based on the solar nonlinear dynamo theory, the polar magnetic fields are the seed fields of the solar activity. That is to say, the physical meaning of polar faculae is more important than sunspot numbers. We think that our results are useful for understanding the physical nature of the systematic regularity of solar activity phenomena.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference50 articles.

1. Fang C, Ding M D, Chen P F 2008 Physics of Solar Active Regions (Nanjing: Nanjing University Press) p18 (in Chinese) [方成, 丁明德, 陈鹏飞 2008 太阳活动区物理 (南京:南京大学出版社) 第18 页]

2. Deng L H, Qu Z Q, Yan X L, Wang K R 2013 Res. Astron. Astrophys. 13 104

3. Chowdhury P, Khan M, Ray P C 2009 Mon. Not. R. Astron. Soc. 392 1159

4. Li K J, Feng W, Xu J C, Gao P X, Yang L H, Liang H F, Zhan L S 2012 Astrophys. J. 747 135

5. Qu Z N, Kong D F, Xiang N B, Feng W 2015 Astrophys. J. 798 113

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3