Phantom experimental photoacoustic scanning imaging of prostate based on internal light irradiation using cylindrical diffusing source

Author:

Peng Dong-Qing ,Xie Wen-Ming ,Wu Shu-Lian ,Tang Jia-Ming ,Li Zhi-Fang ,Li Hui , , ,

Abstract

Photoacoustic imaging has recently emerged as a promising imaging modality for prostate cancer. As ausual light illumination model in the previous studies, the external light illumination is difficult to obtain an accurate reconstructed photoacoustic image. It suffers a great deal of light absorption attenuation by the surrounding scattering tissue and cannot colletct sufficient ultrasound signals for image reconstruction. Some particular methods are required to be considered in the photoacoustic imaging technique for examining prostate, such as a light delivery to prostate with sufficient penetrating depth and minimal invasiveness. According to the structural characteristic of prostate tissue, a photoacoustic imaging system is built by using a novel technique for prostate in this paper. In our photoacoustic imaging system, a cylindrical diffusing source with a 2-cm-long diffuser tip is used for an internal light irradiation through a urethra, and a focused transducer with a 3.5 MHz central frequency and 30.3 mm extended focal zone is located in the rectum for scanning the photoacoustic signal. Phantom experimental imaging is carried out. In the experiment, a transverse resolution of 2.21 mm and an axial resolution of 0.39 mm are obtained. The results demonstrate that the system could achieve the accurate imaging position of the absorber in the tissue sample. Because of the symmetrical emitting of the cylindrical diffusing light source and a relatively better lateral uniformity of light absorption around the light source through the internal irradiation model via urethra, light absorption of the upper side of the light source is almost the same as that of the lower side. Therefore the lengthways and lateral imaging ranges can be improved. In addition, the laser energy is allowed to be increased appropriately to obtain a further imaging result without worrying about heat damages to normal tissues, for the light absorption is less around the cylindrical diffusing light source. In conclusion, the preliminary studies show that the new technique, where the internal light irradiation is implemented by using a cylindrical diffusing source and a focused transducer with extended focal zone, has a potential application in the early noninvasive diagnosis of prostate cancer.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference32 articles.

1. Siegel R, Naishadham D, Jemal A 2013 CA-Cancer J. Clin. 63 11

2. Siegel R, Ma J M, Zou Z H, Jemal A 2014 CA-Cancer J. Clin. 64 9

3. Li M, Zhang S W, Ma J H, Chen W Q, Na Y Q 2009 Chin. J. Urol. 30 368 (in Chinese) [李鸣, 张思维, 马建辉, 陈万青, 那彦群 2009 中华泌尿外科杂志 30 368]

4. Andreev V G, Ponomaryov A E, Henrichs P M, Motamedi M, Orihuela E, Eyzaguirre E, Oraevsky A A 2003 Proc. SPIE 4960 45

5. Wijkstra H, Wink M H, de la Rosette J J M C H 2004 World J. Urol. 22 346

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3