Irradiation and temperature influence on the Bi-doped silica fiber

Author:

Liu Peng ,Liao Lei ,Chu Ying-Bo ,Wang Yi-Bo ,Hu Xiong-Wei ,Peng Jing-Gang ,Li Jin-Yan ,Dai Neng-Li ,

Abstract

We report Bi-doped fibers prepared by modified chemical vapor deposition combination with solution doping process. The fibers are divided into three groups under 60Co radiations with different doses. The absorption spectra and fluorescence spectra of the fiber before and after irradiation are investigated. The dependence of fluorescence intensity of the fiber on temperature (-40-70 ℃) are measured. Experimental results show that the radiation-induced absorptions (RIAs) of the fibers increase significantly at 700 nm and 800 nm with the increase of the irradiation dose. We ascribe the great enhancement of the RIA of the fiber to the generation of more Bi near-infrared (NIR) active centers. Because near infrared nonluminous valance state like Bi3+ captures free electrons and converts into Bi2+, and further into Bi+under the 60Co radiations with different doses. We also find that the NIR fluorescence spectra are stable before and after irradiation under 976 nm LD excitation. The possibility of communication in a radiation environment is proved, such as in outer space is proved. In addition, the fluorescence intensity dependence on temperature in a full-temperature range is analyzed, and we find that the fluorescence intensity decreases with the increase of temperature. It is contributed to the Bi active center that Bi+ may gradually turn into nonluminous Bi metallic colloids during thermal activation. The variation law of fluorescence intensity is analyzed in the whole range of temperature. We believe that the variation law of fluorescence intensity provides data and basis for the stable operation of bismuth-doped fiber laser in the future.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference35 articles.

1. Fujimoto Y, Nakatsuka M 2001 Jpn. J. Appl. Phys. 40 279

2. Fujimoto Y, Nakatsuka M 2003 Appl. Phys. Lett. 82 3325

3. Dvoyrin V V, Mashinsky V M, Dianov E M, Umnikov A A, Yashkov M V, Guryanov A N 2005 31th European Conference on Optical Communications (ECOC) Glasgow, UK, September 25-30, 2005 p949

4. Haruna T, Kakui M, Taru T, Ishikawa S, Onishi M 2005 Optical Amplifiers and Their Applications Budapest, Hungary, August 7-10, 2005 MC3

5. Bufetov I A, Firstov S V, Khopin V F, Medvedkov V I, Guruanov A N, Dianov E M 2008 Opt. Lett. 33 2227

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3