One-dimension nonlinear and dispersive seismic wave modeling in solid media

Author:

Zhou Cong ,Wang Qing-Liang , ,

Abstract

The nonlinear theory in Earth Science is very important for solving the problems of the earth. When considering some of the nonlinear properties of the medium, solitary wave (a special wave with a finite amplitude and a single peak or trough) may appear. Previous studies showed that it may be related to the rupture in the earthquake process. Therefore, it would be very helpful to explain some special phenomena in actual observation data if we fully understand the characteristics of nonlinear waves.#br#In this paper, based on the nonlinear acoustic wave equation, we first perform 1-D nonlinear acoustic wave modeling in solid media using a staggered grid finite difference method. To get the stable and accurate results, a flux-corrected transport method is used. Then we analyze several different types of nonlinear acoustic waves by setting different parameters to investigate their nonlinear characteristics in the solid media. Compared with the linear wave propagation, our results show that the nonlinear coefficients have important influences on the propagation of the acoustic waves. When the equations contain only a third-order nonlinear term (consider the case β 1 ≠ 0, β 2=0, α =0), the main lobe of the wave is tilted backward and its amplitude gradually attenuates with the wave spreading, and the amplitude of its front side-lobe attenuates slowly while the back side-lobe attenuates quickly. The whole shape and amplitude of the wave remain unchanged after propagating a certain distance. When the equations contain only a fourth-order nonlinear term (consider the case β 2 ≠ 0, β 1=0, α =0), the main lobe and the two side-lobes of the wave are all slowly damped, but the shape of the whole wave is unchanged with the wave spreading.#br#In addition, for some combinations of nonlinear and dispersive parameters (consider the case β 1 ≠ 0, α ≠ 0, β 2=0), the wave acts like the linear wave, and the nonlinear acoustic wave is equal to solitary wave which is usually obtained by Kortewegde de Vries (KdV) equation. We validate our modeling method by comparing our results with the analytic solitary solutions. Solitary wave propagates with a fixed velocity slightly less than that of the linear compressional wave, which is probably due to the balance between nonlinear and dispersion effects, making the stress-strain constitutive relations show the nature of linear wave.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference22 articles.

1. Zheng H S, Zhang Z J, Yang B J 2004 Acta Seis. Sin. 26 77 (in Chinese) [郑海山, 张中杰, 杨宝俊 2004 地震学报 26 77]

2. Johnson P A, McCall K R 1994 Geophys. Res. Lett. 21 165

3. Johnson P A 1996 J. Geophys. Res. 101 11553

4. Van den Abeele K E-A 1996 J. Acoust. Soc. Am. 99 3334

5. Miles J W 1980 Ann. Rev. Fl. Mech. 12 11

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3