Research on extended micro-motion target echo simulation and characteristic extraction

Author:

Wang Tong ,Tong Chuang-Ming ,Li Xi-Min ,Li Chang-Ze ,

Abstract

The micro-motion Doppler echo simulation and characteristic parameter extraction of the extended micro-motion target are carried out. For the extended micro-motion target, the echo from the target cannot be regarded as several points' echo. Based on the connections between the scattering field and Doppler echo, an echo simulation method for micro-motion target (based on physical optics) and a method of equivalent current are proposed. At the moment, the micro-motion target can be taken as a static target, so the back scattering field series can be calculated by physical optics and the method of equivalent current. The back scattering field series calculated in the target coordinate system is transformed into the echo of radar coordinate system by the conversion of coordinates, and the Doppler echo is obtained. By comparing with the analytic signal model, the method is validated. The precession characteristics of a cone and warhead with fins are analyzed. Echoes come from every part of the extended micro-motion target and contain the motion characteristics of that part. So the traditional time-frequency analytical methods are not appropriate. In order to achieve better time frequency concentration and avoid the cross terms, the S-method is used to get the time-frequency distributions. The time-frequency characteristics at different radar waves' incidence angles, target different motion states and different geometries are analyzed. From the time-frequency distribution map, the micro-motion of the cone behaves as the micro-motion of two strong scattering points at the bottom of the cone. Because of the shielding effect, the time-frequency curves are not integrated when the radar waves are incident from the cone's bottom. The sinusoidal curve can be mapped to a point in the parameter space based on the inverse radon transform, and the target micro-motion parameters can be obtained. Results of inverse radon transform also show that the precession of the cone behaves as the precession of the two strong scattering points, and the two points' phase difference is equal. For warhead with fins, the time frequency distribution of spin behaves as four sinusoidal curves whose phase differences are equal, implying that the micro-motion of the target behaves like the four fins' micro-motion. However, the sinusoidal curves of precession of the warhead with fins are very different, i.e. their phase differences are not equal. This is because the precession consists of spinning and coning, and the coning has a modulation effect on the spinning. These phase information and the number of strong scattering points can be directly and easily obtained through inverse radon transform. This study combines the electromagnetic scattering with the signal procession. And some results are different from that of traditional micro-motion models through the simulation of typical ballistic targets. Results are explained and analyzed by combining scattering theory. This research has important theoretical and application values in the ballistic target detection and recognition.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3