Abstract
By solving the nonlinear wave equation coupled with the modified Rayleigh-Plesset equation, the characteristics of the acoustic field and bubble motion in cavitation environment can be described. In general, the cavitation cloud consists of many kinds of bubbles with different ambient radii. For simplicity, in this work the cavitation process of the mixture of two kinds of bubbles with different ambient radii is numerically simulated, and the ratio of the mixture is adjustable. Suppose that the cavitation in water contained in a cylindrical container is stimulated by ultrasonic horn. The dissipative absorption of the container wall is taken into account, which plays an important role in forming the stationary standing wave field, otherwise, the beat signal of acoustic pressure will appear which is absent in the observation. Based on the stationary acoustic wave field, for the case of the mixed-bubble cavitation, the interactions between bubbles and acoustic field, bubbles and bubbles, as well as the spectrum of acoustic signal are analyzed. We choose the cases that the ratio of two kinds of bubble species is varying, but the total density of bubble number is fixed to be 1/mm3, and find that those results are very different. For the case that the ambient radii of two bubble species are both a few micron, revealing that the interaction between bubbles and acoustic field is usually weak. As the proportion of bigger bubble increases, the change of the acoustic pressure and the averaged radius of bubble behave regularly; for the case that the ambient radius of one of bubble specie is relatively big, for example, the ambient radius is about a few tens of microns, the interactions between bubbles and acoustic field become stronger, and the nonlinearity is more apparent. We can observe the similar trends from the frequency spectrum. For the bubble of a few microns in size, the base frequency is dominant; in contrast, for the bubble of a few tens of microns in size, the components of harmonic frequencies are far beyond the base frequency component. The interesting phenomenon is that there is the cut off frequency and the cut of frequencies for different mixture of bubbles are almost the same.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献