Curvature weight method of solving the point reactor neutron kinetic equations

Author:

Li Ming-Rui ,Li Hao-Feng ,Chen Wen-Zhen ,Hao Jian-Li , ,

Abstract

The point kinetic equations are the system of a couple stiff ordinary differential equations. Many studies have focused on the development of more advanced and efficient methods of solving the equations, such as the high order Taylor polynomials method, the Haar wavelet operational method, the fractional point-neutron kinetic model method, the basis function method, the homotopy analysis method, and other methods. Most of these methods are successful in some specific problems, but still have, more or less, disadvantages. For example, the accuracy of the Haar wavelet operational method is limited by the collocation points, and it needs more computing time for a high precision. Aiming at the requirements that some numerical calculation results must have the higher precision and only the positive error in the nuclear reactor safety engineering and ship reactor for the maneuverability, in this paper we try to look for a new numerical method to satisfy that the calculation value is slightly higher than the real value when the actual curve is upward convex or downward concave, and the error is not greater than that by the Euler and improved Euler method. The new method is so-called the curvature weight (CW) method, which is based on the curvature circle method and considers the contributions of two curvatures at the interval step point to the average curvature inside the interval step. Using the decoupling method to remove the stiffness of equations and the instantaneous jump approximation to derive the neutron differential equations, the first and second derivative of neutron density are obtained. Then the CW method is used to solve the point reactor neutron kinetic equations, and thus obtaining the numerical solution. Compared with the results by the Euler and improved Euler method, the numerical calculation results by the CW method are always higher than the real value, and the calculation accuracy and speed are improved significantly. When this new method is used to solve the point reactor neutron differential equations with the step and linear reactivity inserted into the subcritical reactor, the numerical results which satisfy the requirements of positive calculation error and high precision can be obtained quickly. After improving the calculation step length, the precision reduction by the CW method is significantly lower than that by the Euler and improved Euler method. So the CW method can greatly shorten the total computing time, and it is also effective for most of differential equation systems.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference22 articles.

1. L Z Q, Zhang L M, Wang Y S 2014 Chin. Phys. B 23 120203

2. Huang Z Q 2007 Kinetics Base of Nuclear Reactor (Beijing: Peaking University Press) p174 (in Chinese) [黄祖洽 2007 核反应堆动力学基础 (北京: 北京大学出版社) 第174页]

3. Zhu Q, Shang X L, Chen W Z 2012 Acta Phys. Sin. 61 070201 (in Chinese) [朱倩, 商学利, 陈文振 2012 物理学报 61 070201]

4. Cai Z S, Cai Z M, Chen L S 2001 Nucl. Power Engng. 22 390 (in Chinese) [蔡章生, 蔡志明, 陈力生 2001 核动力工程 22 390]

5. Cai Z S 2005 Nuclear Power Reactor Neutron Dynamics (Bejing: National Industry Press) pp171-177 (in Chinese) [蔡章生 2005 核动力反应堆中子动力学 (北京: 国防工业出版社) 第171177页]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3