Lateral mode suppression and experiment for the ZnO ring thin-film bulk acoustic resonator (Retracted)

Author:

Li Yu-Jin ,Yuan Xiu-Hua ,Zhao Ming ,Wang Yun-He ,

Abstract

In this paper, we analytically study the spurious lateral mode of the ring (circular) thin-film bulk acoustic resonator (FBAR) by using Tiersten equation. The lateral mode displacement field and frequency dispersion equation are obtained. According to the electromagnetic mode analysis, we find that the mode frequency and spurious electrical responses relate to the ratio of inner radius to outer radius (a/b) of the ring resonator, and its lateral vibration mode can be obtained by coupling other circular FBAR modes. The ring electrode can greatly reduce the number of spurious electrical responses caused by lateral resonances. Suppressing lateral mode and adjusting fundamental frequency can be achieved by controlling a/b. In this paper, the experiments for the same batch of ring and circular FBARs are carried out by using a heterodyne interferometer and a vector network analyzer, including the measurements of acoustic wave fields and eigenmode spectra, which can provide the information about vibration localization and coupling between lateral mode and thickness extensional mode. The data indicate that the lateral vibration mode of ring FBAR can be obtained by coupling the two modes of circular FBARs, whose radii are a and b, respectively, and the lateral mode pattern of n' = 0 is suppressed. When the ring resonator is designed with an a/b ratio of 0.436, the fundamental frequency (~ 1217 MHz) is the same as the (0, 1) mode frequency of the circular FBAR. Based on this observation, the acoustic wave field images and electrical spurious responses can accurately describe the lateral modes, and the obtained results accord well with the analyses of theoretical electromagnetic modes. This phenomenon may be found to have applications in the design and theoretical analysis of the resonators.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3