Harmonic signal detection method from strong chaotic background based on optimal filter

Author:

Hu Jin-Feng ,Zhang Ya-Xuan ,Li Hui-Yong ,Yang Miao ,Xia Wei ,Li Jun , ,

Abstract

It is of great significance to study the weak harmonic signal detection from strong chaotic background. Current detection methods mainly use the chaotic phase space reconstruction method based on Takens theory, among which the neural network method has attracted the most attention. However, these methods require high signal-to-interference-plus-noise ratio (SINR) and are sensitive to Gaussian white noise, etc. Noticing the fact that the second-order statistical properties of chaotic signals are stationary, we propose a harmonic signal detection method from strong chaotic background based on optimal filter. We first construct a data matrix, whose rows are the detection signal and reference signals. The reference signals only contain chaotic interference. Then we calculate the one-dimensional fast Fourier transformation of the data matrix to make each column of the matrix form a frequency channel. The harmonic signal can be detected by searching each frequency channel in the frequency domain, thus the signal detection problem is converted into an optimization problem. Further, we use the optimization theory to design a filter such that it can maintain the gain of the signal from the current frequency channel and suppress signals from other frequency channels as far as possible. Finally, the harmonic signal can be obtained by calculating the output SINR of each frequency channel. In order to reduce the calculation, we can further design a local region optimal filter. We choose part of frequency channels to constitute a local area, thus the dimension of the chaotic interference covariance matrix is greatly reduced. Theoretically speaking, the more the number of auxiliary frequency channels, the better the detection results are. However, in the practical application, choosing two channels on the left and right side of current channel each can obtain a very good detection effect. After obtaining the chaotic interference covariance matrix, we can further achieve the output SINR of each frequency channel. Compared with the traditional methods, the proposed method has the following advantages: 1) it can detect a weak harmonic signal under lower SINR; 2) it can detect a greater range of signal amplitude; 3) it is robust against white Gaussian noise. The simulation results with taking Lorenz system as the strong chaotic background show that the proposed method still has a very good detection effect when SINR =-81.03 dB, and the stronger the harmonic signal, the better the detection effect is, while the neural network method can work under the condition of SINR higher than -67.03 dB; the proposed method still can correctly detect the target signal in the case that the SNR is as low as -20 dB, but the neural network method has a poor detection effect under the same condition.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference16 articles.

1. Hu J F, Guo J B 2008 Chaos 18 013121

2. Aghababa M P 2012 Chin. Phys. B 21 100505

3. Li H T, Zhu S L, Qi C H, Gao M X, Wang G Z 2013 Adv. Mater. Res. 734 3145

4. Khunkitti P, Kaewrawang A, Siritaratiwat A, Mewes T, Mewes C K, Kruesubthaworn A 2015 Appl. Phys. 117 17A908

5. Zhang Y, Liu S H, Hu X F, Wang L, Zhu L 2014 High Voltage Technol. 9 29 (in Chinese) [张悦, 刘尚合, 胡小锋, 王雷, 朱利 2014 高电压技术 9 29]

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3