Preparation and characteristics of ZnO nanoflowers

Author:

Wu Xiao-Ping ,Liu Jin-Yang ,Lin Li-Mei ,Zheng Wei-Feng ,Qu Yan ,Lai Fa-Chun ,

Abstract

Unlike the general substrates such as SiO2, ITO, and AZO, the metal foil used as a substrate is rarely studied in application in the substrate, however, it has lots of advantages including cheapness, good conductivity and excellent scalability. In this paper, an acanthosphere-like structure named ZnO nanoflowers is successfully synthesized on Cu foil by using chemical vapor deposition method. The gas flows with oxygen-argon ratios ranging from 1 : 150, 1 : 200, 1 : 250 to 1 : 400, which impacted on Cu foil, and the property of the ZnO nanoflowers are carefully studied. The SEM images shown that there are lots of ZnO nanorods grown on the sphere cores, and look like flowers. The ZnO nanoflowers contains uniformly sized ZnO nanorods and morphology with best flower structure when the oxygen/argon gas flow ratio is 1 : 250. Furthermore, the length-diameter ratio of the ZnO nanorods on the ZnO nanoflowers decreases as the oxygen-argon gas flow ratio decreases. The ZnO is of hexagonal wurtzite structure indicated by XRD pattern and there exist no other diffraction peaks existence except those from the Cu foil. In addition, the photoluminescence of ZnO nanoflower changes from a wave packet into a broad peak in the visible region when the oxygen-argon gas flow ratio between decreases. Further study of the photoluminescence by fitting the peaks in visible region with gaussian function indicates that the photoluminescence relating to the oxygen vacancy defects increases, but that relating to the zinc vacancy defects decreases. Therefore, the white light emitting device may be constructed based on the ZnO nanoflowers studied shown above. Finally, a possible model of the ZnO nanoflowers grown on Cu foil is proposed based on the experimental results.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3