Control of chaos in a semiconductor laser using the Faraday effect

Author:

Yan Sen-Lin ,

Abstract

We present a novel laser system with an external cavity delay feedback semiconductor laser under the control of Faraday effect. To study the chaos-control and chaos-anti-control of the laser system, we construct two types of optical path structures as two control systems of the negative feedback and the ring cavity by using the combination of the Faraday effect controller, the polarizer and the mirror. We give a physical model of laser dynamics with the delayed negative feedback or the delayed positive feedback under the control of Faraday effect. Using the Faraday effect principle of magnetic rotation and the characteristics of the system, we can achieve the double parameter control of the laser. We can shift the optical rotation angle by operating Faraday effect controller and modulate the optical delay time by performing the mirror to vary the double parameter. The laser can be controlled to a double-cycle, a tri-cycle, a multi-cycle, and beat phenomenon by using the control system of the negative feedback, etc. The periodic laser can be anti-controlled to chaos by using the control system of the ring cavity. Some control and anti-control areas formed with the distribution of magnetic rotation angular are found in the laser. For the negative feedback system under the some control cases, the chaotic laser can be controlled to some tri-cycle states between π/14 and π/9. By shifting the control parameters, the chaotic laser can be controlled to some cycle-7 states between 10π/133 and 10π/108 and another tri-cycle region is found from 10π/96 to π/8. Under other control parameters, the chaotic laser can be controlled to some cycle-8 or cycle-9 states. For the ring cavity system under the some control cases, the dual-cycle region is between π/10 and π/30, the cycle-6 region is between π/4 and π/5, the cycle-13 region is found to be from π/6 to 10π/76. In another control case, the large chaos-anti-control region is found to exist between 0 and π/12. Dynamic controls of the chaotic laser and the periodic laser are also studied while the transformation and evolution of laser states are discussed. It is found that it takes about 10 ns for one state to change into another state when the control operation is applied to the laser. The control method is very useful for studying chaos-control, new laser system and its application.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3