Hydrogen storage properties of Li-decorated C24 clusters

Author:

Qi Peng-Tang ,Chen Hong-Shan ,

Abstract

Hydrogen is considered as a potentially ideal substitution for fossil fuels in the future sustainable energy system because it is an abundant, clean and renewable energy carrier. A safe, efficient and economic storage method is the crucial prerequistite and the biggest challenge for the wide scale use of hydrogen. The nanomaterial is one of the most promising hydrogen storage materials because of its high surface to volume ratio, unique electronic structure and novel chemical and physical properties. It has been demonstrated that pristine nanostructures are not suitable for hydrogen storage, since they interact weakly with hydrogen molecule and their hydrogen storage density is very low. However, the hydrogen storage capacity of the nanostructures can be significantly enhanced through substitutional doping or decoration by metal atoms. Using density functional theory, we investigate the properties of hydrogen adsorption on Li-decorated C24clusters. Results show that the preferred binding site for Li atom is the pentagonal rings. The interaction of Li atoms with the clusters is stronger than that among Li atoms, thus hindering effectively aggregation of Li atoms on the surface of the cluster. The decorated Li atoms are positively charged due to electron transfer from Li to C atoms. When H2 molecules approach Li atoms, they are moderately polarized under the electric field, and adsorbed around the Li atoms in molecular form. Each Li atom in the Li-decorated C24 complexes can adsorb two to three H2 molecules. The H-H bond lengths of the adsorbed H2 molecules are slightly stretched. The average adsorption energies are in the range of 0.08 to 0.13 eV/H2, which are intermediate between physisorption and chemisorption. C24Li6 can hold up to 12 H2 molecules, corresponding to a hydrogen uptake density of 6.8 wt%. This value exceeds the 2020 hydrogen storage target of 5.5 wt% proposed by the U. S. Department of Energy.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hydrogen storage in C6O6M6 (M = Li, Na): A DFT study;International Journal of Hydrogen Energy;2023-09

2. First-principles study of Li decorated coronene graphene;International Journal of Modern Physics B;2017-11-07

3. Dissociation of H 2 on Mg-coated B 12 C 6 N 6;Chinese Physics B;2017-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3