Author:
Luo Xue-Xue ,Chen Jia-Bi ,Hu Jin-Bing ,Liang Bin-Ming ,Jiang Qiang ,
Abstract
Symmetrical metal-cladding waveguide (SMCW) is a kind of new waveguide construction, and it consists of a planar glass slab sandwiched in two metal films with different thicknesses. The metal in this structure is usually a noble metal, such as Au, Ag and Cu etc. One of the characteristics of the glass is the sub-millimeter thickness, which is useful for exciting the ultrahigh order mode. Since the SMCW structure was proposed, it has received much attention from the researchers for its excellent characteristics of free-space coupling technique and ultrahigh order mode excitation. This free-space coupling technology has a higher sensitivity compared with the end-face coupling, prism coupling and grating coupling techniques. The ultrahigh order mode is very sensitive to the incident light wavelength, the thickness of guiding layer and the refractive index, but not sensitive to polarization. Based on the thermal-optical effect and thermal expansion effect of metal film and guiding layer materials, we research the temperature property of the SMCW structure. Researching methods include simulation analysis and experimental demonstration. First, we calculate the relation of the thickness and dielectric property of metal films, and the thickness and refractive index of the guiding layer with the temperature. Results show that these four factors are nearly proportional to the temperature difference. Then, we simulate the relationship of the reflectivity of the SMCW structure with those four factors by means of single-factor investigation under spectral and angular interrogation mode of operation, and find that the temperature-dependence of thickness of the guiding layer makes the chief contribution to the waveguide function of SMCW. Meanwhile, we analyze the sensitivity of the sensors based on SMCW structure, and the result shows that the sensitivity of this kind of sensor can be up to 21.89 pm/K (spectral mode) and 1.449×10-3 rad/K (angular mode). Finally, we demonstrate the simulation results by experiment. In our experiment, a series of reflectivity is measured at temperatures varying from 320 to 380 K, and the value is expressed in the form of voltage output of PSD (position sensitive diode). The sensor shows a good linearity and a high average resolution of 0.517×10-3 rad/K; furthermore, we fit the experimental data and get the linear function between angle shifts and temperature difference of Δθ = 0.02965×ΔT. So, once the temperature has any minute variation, it will easily give a change in the resonance incident angle and show the effect of sensor. Owing to the advantages of high sensitivity, low cast and easy fabrication, the temperature sensor based on SMCW will be a promising sensor in many fields.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy