Theoretical study on the stream formation in the nitrogen switch

Author:

Zhou Qian-Hong ,Dong Zhi-Wei ,Jian Gui-Zhou ,Zhou Hai-Jing , , ,

Abstract

The stream formation in a 1-atm nitrogen gas switch is investigated by the two-dimensional and three-velocity (2D3V) particles through the cell-Monte Carlo collision (PIC-MCC) simulation and theoretical analysis. For simplicity, two parallel plane electrodes of 0.6 mm width are separated by a distance of 1.6 mm. It is found that the analytical solution of the electron density equation can be used to study the evolution of the plasma before the stream breaks down, for the ionization frequency, mean electron energy and electron drift velocity are all constant. After the breakdown of the stream, random collisions destroy the symmetry of the plasma region and cause plasma to branch. As plasma density increases, the electric field inside the plasma region decreases due to the shielding effect. However, charge densities at both ends of the plasma region increase and the density at the anode end is larger than that at the cathode end, for the plasma exponentially grows as electrons move from the cathode toward the anode. This causes the electric field at the end of plasma near the anode to be larger than that near the cathode. It is found that the electrons can achieve their stable mean energy in several picoseconds due to the high transfer frequency (1011-1012 Hz) of the electron energy in the nitrogen plasma. After the breakdown of the stream, the mean electron energy decreases due to the decrease of the electron energies inside the plasma. By increasing the electrode voltage, it is found that the mean electron energy increases, the electron drift velocity increases linearly, and the variation rate of ionization frequency with electric field is in a range between E4 and E5. Therefore, the time taking for breaking down the stream decreases with the increase of the electrode voltage.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference17 articles.

1. Mesyats G A 2005 Pulsed Power (New York: Kluwer Academic/Plenum Publishers)

2. Liu X S 2005 High Pulsed Power Technology (Beijing: National Defense Industry Press) (in Chinese) [刘锡三 2005 高功率脉冲技术 (北京:国防工业出版社)]

3. Benford J, Swegle J A, Schamiloglu E 2007 High Power Microwaves (New York: Taylor & Francis)

4. Luo H Y, Wang X X, Liang Z, Guang Z C, Wang L M 2010 Acta Phys. Sin. 59 8739 (in Chinese) [罗海云, 王新新, 梁卓, 关志成, 王黎明 2010 物理学报 59 8739]

5. Li G P, Wang X X, Yuan J S 2004 High Power Laser and Particle Beams 16 540 (in Chinese) [李桂萍, 王新新, 袁建生 2004 强激光与粒子束 16 540]

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3