Surface roughness modeling based on laser speckle imaging

Author:

Chen Su-Ting ,Hu Hai-Feng ,Zhang Chuang , ,

Abstract

Surface roughness is an important parameter in measuring the roughness of surface formed by laser irradiation on the workpiece. Speckle images of rough surfaces in different classes and different surface roughness values are obtained by constructing a set of laser speckle image acquisition systems. First, the texture features of speckle images including coarseness, contrast and direction are extracted using Tamura texture theory. Then, the interactions these three features with the surface roughness are analyzed. Based on the analyses of their monotonic relations, the surface roughness functions, including flat grinding, external grinding and mill grinding craftworks, are established respectively between the texture coarseness feature of the speckle image Fcrs and surface roughness Ra. Through the establishment of surface roughness function for the above three classes of workpieces, the value of surface roughness can be computed directly. However, before obtaining the value of surface roughness, the classes of processing technic should be determined because of the inconsistency of function expressions for different classes. And based on the specific connection and related dependencies between Tamura texture features and workpiece class, Bayes network is proposed to describe this uncertainty relation among different classes. Through network structure learning and parameter learning, a model for reasoning is found which can be used to determine the class of workpiece after obtaining texture coarseness feature Fcrs. Thus, not only can the value of surface roughness be measured, also the class of work-piece can be recognized. Experiments are conducted to confirm the feasibility of the proposed model for measurement. The detection results indicate that high precision and accuracy are achieved for both workpiece class recognition and roughness measurement.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference20 articles.

1. Wang C X 2010 IIE Trans. 35 11

2. Fuh YK, Hsu KC, Fan JR 2012 Opt. Lett. 37 848

3. Shahabi H H, Ratnam M M 2010 Int. J. Adv. Manuf. Technol. 46 275

4. Dainty J C 1984 Laser Speckle and Related Phenomena (Berlin: Spring-Verlag) p18, p29

5. Williams G, Pfeifer M, Vartanyants I, Robinson I 2003 Phys. Rev. Lett. 90 175501

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3