Heavy-fermion superconductivity and competing orders

Author:

Yang Yi-Feng ,Li Yu , ,

Abstract

One of the most salient features of heavy fermion superconductivity is its coexistence with various competing orders. Superconductivity often emerges near or at the border of these exotic orders and their interplay may give rise to many interesting quantum phenomena. In this paper, we give a brief review of the various heavy fermion superconductors discovered so far and show there may exist an intimate connection between their superconducting pairing and quantum critical spin/charge/orbital fluctuations. We classify these superconductors into three categories:(A) CeM2X2, CenMmIn3n+2m, CePt3Si, CeMX3, CeNiGe3, Ce2Ni3Ge5 and CePd5Al2, in which superconductivity emerges at the border of antiferromagnetic phase; YbRh2Si2, in which superconductivity was very recently found inside the antiferromagnetic phase at 2 mK; UX2Al3 and UPt3, in which superconductivity occurs inside the antiferromagnetic phase; and UBe13 and U6Fe, in which the connection between magnetism and superconductivity is not yet clear. Among them, CePt3Si and CeMX3 are noncentrosymmetric, while UPt3 exhibits spin triplet pairing inside an antiferromagnetic phase.(B) UGe2, URhGe, UCoGe, UIr and U2PtC2, are spin triplet superconductors under the influence of ferromagnetic order or fluctuations.(C) URu2Si2, PrOs4Sb12, PrT2X20, Pu-115, NpPd5Al2 and -YbAlB4, in which superconductivity may be related to other exotic quantum states or fluctuations such as hidden order, valence fluctuations and quadrupolar fluctuations.In these compounds, f-electrons may participate in both superconductivity and other competing orders and often behave simultaneously itinerant and localized. These could be described by a phenomenological two-fluid theory, in which two coexisting fluidsan itinerant heavy electron fluid (the Kondo liquid) and a spin liquid of unhybridized local f-momentscompete to give rise to the various low temperature orders as well as superconductivity. Combining the two-fluid picture and the idea of spin-fluctuation-induced superconducting pairing, a BCS-like formula is proposed for calculating the superconducting transition temperature, and the results are found to be in good agreement with the experimental data for Ce-115. This model can explain naturally the microscopic coexistence of superconductivity and antiferromagnetism in these materials, and provides a promising guidance to other heavy fermion superconductors to achieve a systematic examination of the interplay between superconductivity and other exotic orders.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3