Interface reflection wave of axisymmetric directional spherical-wave

Author:

Duan Yun-Da,Hu Heng-Shan,

Abstract

The sound radiation field of a circular piston source in an infinite plane rigid baffle can be approximated as an axisymmetric directional spherical-wave. The interface response expressions of the axisymmetric directional spherical-wave for the piston parallel with the interface has already been obtained in previous studies. On condition that the distance from the piston center to the interface is much greater than the piston radius, we first derive the conical wave expansion of the axisymmetric directional spherical-wave which is obtained by using the conical wave expansion of the homogeneous spherical-wave and the formula of the axisymmetric directional spherical-wave excited by a circular piston in an rigid infinite plane, and then derive the expression of the interface reflection wave of the axisymmetric directional spherical-wave for the piston non-parallel to the interface. The expression of the interface reflection wave is simplified into a simplified expression by saddle point method on condition that the source distance is much larger than the acoustic wavelength. The simplified expression is not only simple in the calculation, but also clear in the physical meaning. The simplified expression shows that the interface reflection wave of the axisymmetric directional spherical-wave can be regarded as the product of the axisymmetric directional spherical-wave excited by the piston mirror image and the reflection coefficient. The calculations show that when the piston radius is smaller than the acoustic wavelength, the reflected wave is less sensitive to the angle included between the piston and the interface and the azimuth of the receiving point, and the directivity of the reflected wave is weak. When the piston radius is greater than the acoustic wavelength, the reflected wave is very sensitive to the angle included between the piston and the interface and the azimuth of the receiving point, and the directivity of the reflected wave is strong. Increasing the angle included between the piston and the interface, the reflected wave and its directivity both first increase and then decrease. The reflected wave is largest and the directivity of the reflected wave is strongest when the angle included between the piston and the interface is equal to that between the interface normal and the connecting line between the mirror image of the piston center and the receiving point.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference28 articles.

1. Ten D, Yang H, Li D J 2016 Underwater Acoustic Transducer Foundation (Xi’an: Northwestern Polytechnical University Press) pp1–3 (in Chinese)
腾舵, 杨虎, 李道江 2016 水声换能器基础 (西安: 西北工业大学出版社) 第1—3页

2. Yang K D, Duan R, Li H, Ma Y L 2019 Theory and Technology of Underwater Sound Source Location (Beijing: Publishing House of Electronics Industry) pp1–3 (in Chinese)
杨坤德, 段睿, 李辉, 马远良 2019 水下声源定位理论与技术 (北京: 电子工业出版社) 第1—3页

3. Mo X P 2012 Appl. Acoust. 31 171
莫喜平 2012 应用声学 31 171

4. Hall D E 1987 Basic Acoustics (New York: Harper & Row Publishers) pp161–177

5. Zhu Z R 2015 Introduction to the Application of Vector Hydrophone under Sonar Baffle (Harbin: Harbin Engineering University Press) p29 (in Chinese)
朱中锐 2015 声呐障板下矢量水听器应用引论 (哈尔滨: 哈尔滨工程大学出版社) 第29页

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3