Magnetic anisotropy and reversal in epitaxial FeGa/IrMn bilayers with different orientations of exchange bias

Author:

Meng Jing,Feng Xin-Wei,Shao Qing-Rong,Zhao Jia-Peng,Xie Ya-Li,He Wei,Zhan Qing-Feng, , ,

Abstract

Epitaxial FeGa/IrMn bilayers with exchange biases along the FeGa[100] and [110] directions are prepared on MgO(001) single crystal substrates by magnetron sputtering through controlling the orientation of the external field <i>in situ</i> applied during growth. The effect of the exchange bias orientation on the magnetic switching process and the magnetic switching field are studied. The X-ray <i>φ</i>-scan indicates that the FeGa layer is epitaxially grown with a 45° in-plane rotation on the MgO(001) substrate along the FeGa(001)[110] direction and the MgO(001)[100] direction. The measurements of the angular dependence of the ferromagnetic resonance field and the corresponding fitting to the Kittel equation show that the samples have a superposition of fourfold symmetric magnetocrystalline anisotropy <inline-formula><tex-math id="M4">\begin{document}$ {K}_{1} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20220166_M4.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20220166_M4.png"/></alternatives></inline-formula>, unidirectional magnetic exchange bias anisotropy <inline-formula><tex-math id="M5">\begin{document}$ {K}_{\mathrm{e}\mathrm{b}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20220166_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20220166_M5.png"/></alternatives></inline-formula>, and uniaxial magnetic anisotropy <inline-formula><tex-math id="M6">\begin{document}$ {K}_{\mathrm{u}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20220166_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20220166_M6.png"/></alternatives></inline-formula> with configuration of <inline-formula><tex-math id="M7">\begin{document}$ {K}_{\mathrm{e}\mathrm{b}}//\left[100\right] $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20220166_M7.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20220166_M7.png"/></alternatives></inline-formula> or <inline-formula><tex-math id="M8">\begin{document}$ {K}_{\mathrm{e}\mathrm{b}}//\left[110\right] $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20220166_M8.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20220166_M8.png"/></alternatives></inline-formula>. The combined longitudinal and transverse magneto-optical Kerr effect measurements show that sample with <inline-formula><tex-math id="M9">\begin{document}$ {K}_{\mathrm{e}\mathrm{b}}//\left[100\right] $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20220166_M9.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20220166_M9.png"/></alternatives></inline-formula> exhibits square loops, asymmetrically shaped loops, and one-sided two-step loops in different external magnetic field directions. In contrast, the sample with <inline-formula><tex-math id="M10">\begin{document}$ {K}_{\mathrm{e}\mathrm{b}}//\left[110\right] $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20220166_M10.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20220166_M10.png"/></alternatives></inline-formula> exhibits one-sided two-step and two-sided two-step loops as the magnetic field orientation changes. Because the <inline-formula><tex-math id="M11">\begin{document}$ {K}_{1} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20220166_M11.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20220166_M11.png"/></alternatives></inline-formula> is superimposed by <inline-formula><tex-math id="M12">\begin{document}$ {K}_{\mathrm{u}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20220166_M12.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20220166_M12.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M13">\begin{document}$ {K}_{\mathrm{e}\mathrm{b}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20220166_M13.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20220166_M13.png"/></alternatives></inline-formula>, the in-plane fourfold symmetry of the magnetic anisotropy energy is broken. The local minima are no longer strictly along the in-plane <inline-formula><tex-math id="M14">\begin{document}$ \left\langle{100}\right\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20220166_M14.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20220166_M14.png"/></alternatives></inline-formula> directions, but make a deviation angle which depends on the relative orientation and strength of magnetic anisotropy. A model based on the domain wall nucleation and propagation is proposed with considering the different orientations of <inline-formula><tex-math id="M15">\begin{document}$ {K}_{\mathrm{e}\mathrm{b}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20220166_M15.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20220166_M15.png"/></alternatives></inline-formula>, which can nicely explain the change of the magnetic switching route with the magnetic field orientation and fit the angular dependence of the magnetic switching fields, indicating a significant change of domain wall nucleation energy as the orientation of <inline-formula><tex-math id="M16">\begin{document}$ {K}_{\mathrm{e}\mathrm{b}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20220166_M16.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20220166_M16.png"/></alternatives></inline-formula> changes.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3