Influence of low clouds on atmospheric refractive index structure constant based on radiosonde data

Author:

Zhang Kun,Luo Tao,Wang Fei-Fei,Sun Gang,Liu Qing,Qing Chun,Li Xue-Bin,Weng Ning-Quan,Zhu Wen-Yue, , , ,

Abstract

Based on the measured thermal radiosondes, the WR95 method is used to identify the vertical structure of low clouds. The atmospheric refractive index structure constant<inline-formula><tex-math id="Z-20220414045407-1">\begin{document}$C_{n}^2$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20211792_Z-20220414045407-1.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20211792_Z-20220414045407-1.png"/></alternatives></inline-formula>, meteorological conditions and atmospheric stability are contrastively analyzed under cloudy and clear sky weather. The results show that the influence of low-level thin clouds on the fluctuation of <inline-formula><tex-math id="M11">\begin{document}$ C_n^2 $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20211792_M11.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20211792_M11.png"/></alternatives></inline-formula> is negligible, showing only a slight increase trend. The <inline-formula><tex-math id="M12">\begin{document}$ C_n^2 $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20211792_M12.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20211792_M12.png"/></alternatives></inline-formula> at low-level thin clouds base and top is about 1.6 and 2.5 times that under clear sky weather to a greatest extent, respectively. The <inline-formula><tex-math id="M13">\begin{document}$ C_n^2 $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20211792_M13.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20211792_M13.png"/></alternatives></inline-formula> at the low-level medium-thick clouds top is 3.8–6.61 times the amplitude of that under clear sky weather, and enhanced amplitude of <inline-formula><tex-math id="M14">\begin{document}$ C_n^2 $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20211792_M14.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20211792_M14.png"/></alternatives></inline-formula> near the cloud top is greater than that near the cloud base. Atmospheric turbulence near the cloud base is driven by the combined effect of ground heat and low clouds cooling. The sinking airflow from clouds is coupled with the upward airflow from ground, which motivates wind shear, resulting <inline-formula><tex-math id="M15">\begin{document}$ C_n^2 $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20211792_M15.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20211792_M15.png"/></alternatives></inline-formula> increases near this height. A comprehensive comparison of the <inline-formula><tex-math id="M16">\begin{document}$ C_n^2 $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20211792_M16.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20211792_M16.png"/></alternatives></inline-formula> between clear sky and cloudy weather shows that the enhancement effect of clouds on <inline-formula><tex-math id="M17">\begin{document}$ C_n^2 $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20211792_M17.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20211792_M17.png"/></alternatives></inline-formula> is roughly on the order of 10<sup>–16</sup>. Wind shear reaches its maximum value at or above the cloud top. Because of the combined effect of short-wave radiation warming and long-wave radiation cooling near the cloud top, temperature inversion layers with different thickness will be formed obove the cloud top, resulting in a sharp increase in the potential temperature lapse rate at the cloud top, and the Brunt-Vaisala frequency <inline-formula><tex-math id="M18">\begin{document}$ {N^2} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20211792_M18.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20211792_M18.png"/></alternatives></inline-formula> is increased by 0.5–3.0 times. And <inline-formula><tex-math id="M19">\begin{document}$ {N^2} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20211792_M19.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20211792_M19.png"/></alternatives></inline-formula> near the cloud base is less than that under the clear sky weather. Owing to the turbulent effect caused by cloud multi-scale activities, it is inevitable to cause assessment and correction deviations in the laser transmission. A deep understanding of how turbulence behave within different phase clouds or around cloud boundaries can also lay the foundation for further modeling the atmospheric turbulence around clouds.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference48 articles.

1. Ipcc A R 2013 Clouds and Aerosols. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Report

2. Bodenschatz E, Malinowski S P, Shaw R A, Stratmann F 2010 Science 327 970

3. Paredes Quintanilla M E, Abdunabiev S, Allegretti M, Merlone A, Musacchio C, Pasero E G A, Tordella D, Canavero F 2021 Sensors 21 1351

4. Stechmann S N, Stevens B 2010 J. Atmos. Sci. 67 3269

5. Driedonks A G M, Duynkerke P G 1989 Bound-Lay. Meteorol. 46 275

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3